Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | 13 | nr 1 | 1-24
Tytuł artykułu

Accounting for Spatial Heterogeneity of Preferences in Discrete Choice Models

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are reasons researchers may be interested in accounting for spatial heterogeneity of preferences, including avoiding model misspecification and the resulting bias, and deriving spatial maps of willingness-to-pay (WTP), which are relevant for policy-making and environmental management. We employ a Monte Carlo simulation of three econometric approaches to account for spatial preference heterogeneity in discrete choice models. The first is based on the analysis of individual-specific estimates of the mixed logit model. The second extends this model to explicitly account for spatial autocorrelation of random parameters, instead of simply conditioning individual-specific estimates on population-level distributions and individuals' choices. The third is the geographically weighted multinomial logit model, which incorporates spatial dimensions using geographical weights to estimate location-specific choice models. We analyze the performance of these methods in recovering population-, region- and individual-level preference parameter estimates and implied WTP in the case of spatial preference heterogeneity. We find that, although ignoring spatial preference heterogeneity did not significantly bias population-level results of the simple mixed logit model, neither individual-specific estimates nor the geographically weighted multinomial logit model was able to reliably recover the true region- and individual-specific parameters. We show that the spatial mixed logit proposed in this study is promising and outline possibilities for future development. (original abstract)
Rocznik
Tom
13
Numer
Strony
1-24
Opis fizyczny
Twórcy
  • University of Warsaw
  • University of Warsaw
Bibliografia
  • [1] Abildtrup J., Garcia S., Olsen S. B., Stenger A., (2013), Spatial preference heterogeneity in forest recreation, Ecological Economics 92(1), 67-77.
  • [2] Broch S. W., Strange N., Jacobsen J. B., Wilson K. A., (2013a) Farmers' willingness to provide ecosystem services and effects of their spatial distribution, Ecological Economics 92, 78-86.
  • [3] Broch S. W., Strange N., Jacobsen J. B., Wilson K. A., (2013b), Farmers' willingness to provide ecosystem services and effects of their spatial distribution, Ecological Economics 92(0), 78-86.
  • [4] Budziński W., Campbell D., Czajkowski M., Demsar U., Hanley N., (2018), Using geographically weighted choice models to account for spatial heterogeneity of preferences, Journal of Agricultural Economics 69(3), 606-626.
  • [5] Budziński W., Campbell D., Czajkowski M., Demsar U., Hanley N., Using geographically weighted choice models to account for spatial heterogeneity of preferences, Journal of Agricultural Economics, forthcoming.
  • [6] Campbell D., Hutchinson W. G., Scarpa R., (2009), Using Choice Experiments to Explore the Spatial Distribution of Willingness to Pay for Rural Landscape Improvements, Environment and Planning A 41(1), 97-111.
  • [7] Campbell D., Scarpa R., Hutchinson W. G., (2008), Assessing the spatial dependence of welfare estimates obtained from discrete choice experiments, Letters in Spatial and Resource Sciences 1(2-3), 117-126.
  • [8] Carson R. T., Czajkowski M., (2014), The Discrete Choice Experiment Approach to Environmental Contingent Valuation, [in:] Handbook of choice modelling, Hess S., Daly A., [eds.] Elgar E., Northampton, MA.
  • [9] Czajkowski M., Budziński W., (2015), An insight into the numerical simulation bias - a comparison of efficiency and performance of different types of quasi Monte Carlo simulation methods under a wide range of experimental conditions, Environmental Choice Modelling Conference, Copenhagen.
  • [10] Czajkowski M., Budziński W., (2019), Simulation error in maximum likelihood estimation of discrete choice models, Journal of Choice Modelling 31, 73-85.
  • [11] Czajkowski M., Budziński W., Campbell D., Giergiczny M., Hanley N., (2017), Spatial Heterogeneity of Willingness to Pay for Forest Management, Environmental and Resource Economics 68(3), 705-727.
  • [12] Dekker T., Koster P., Brouwer R., (2014), Changing with the Tide: Semiparametric Estimation of Preference Dynamics, Land Economics 90(4), 717- 745.
  • [13] Fotheringham A. S., Brunsdon C., Charlton M., (2003), Geographically weighted regression: the analysis of spatially varying relationships, John Wiley & Sons.
  • [14] Fotheringham S., Charlton M., Brunsdon C., (1998), Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis, Environment and Planning A 30(11), 1905-1927.
  • [15] Gelman A., Carlin J. B., Stern H. S., Dunson D. B., Vehtari A., Rubin D. B., (2014), Bayesian data analysis, CRC press Boca Raton, FL.
  • [16] Hanley N., Czajkowski M., (2019), The Role of Stated Preference Valuation Methods in Understanding Choices and Informing Policy, Review of Environmental Economics and Policy 13(2), 248-266.
  • [17] Hess S., Train K., (2017), Correlation and scale in mixed logit models, Journal of Choice Modelling 23, 1-8.
  • [18] Hynes S., Hanley N., O'Donoghue C., (2010), A Combinatorial Optimization Approach to Nonmarket Environmental Benefit Aggregation via Simulated Populations, Land Economics 86(2), 345-362.
  • [19] Johnston R. J., Ramachandran M., (2014), Modeling Spatial Patchiness and Hot Spots in Stated Preference Willingness to Pay, Environmental and Resource Economics 59(3), 363-387.
  • [20] Johnston R. J., Ramachandran M., Schultz E. T., Segerson K., Besedin E. Y., (2011), Characterizing spatial pattern in ecosystem service values when distance decay doesn't apply: choice experiments and local indicators of spatial association. Paper number 103374 provided by Agricultural and Applied Economics Association in its series 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania.
  • [21] Koster P. R., Koster H. R. A., (2015), Commuters' preferences for fast and reliable travel: A semi-parametric estimation approach, Transportation Research Part B: Methodological 81, Part 1, 289-301.
  • [22] LeSage J. P., (1999), The Theory and Practice of Spatial Econometrics, unpublished manuscript available at: http://www.spatial-econometrics.com.
  • [23] McFadden D., (1974), Conditional Logit Analysis of Qualititative Choice Behaviour, [in]: Frontiers in Econometrics, [ed.:] Zarembka P., Academic Press, New York, NY, 105-142.
  • [24] Smith T. E., LeSage J. P., (2004), A bayesian probit model with spatial dependencies, Spatial and Spatiotemporal Econometrics 18(18), 127-160.
  • [25] Train K., Sonnier G., (2005), Mixed Logit with Bounded Distributions of Correlated Partworths, [in:] Applications of Simulation Methods in Environmental and Resource Economics, [eds.:] Scarpa R., Alberini A., Springer Netherlands, 117-134.
  • [26] Train K. E., (2009), Discrete Choice Methods with Simulation, 2 Ed., Cambridge University Press, New York.
  • [27] Yao R. T., Scarpa R., Turner J. A., Barnard T. D., Rose J. M., Palma J. H. N., Harrison D. R., (2014), Valuing biodiversity enhancement in New Zealand's planted forests: Socioeconomic and spatial determinants of willingness-to-pay, Ecological Economics 98(0), 90-101.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171614683
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.