Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Unmanned Aerial Vehicles (UAVs), commonly known as drones are increasingly being used for three-dimensional (3D) mapping of the environment. This study utilised UAV technology to produce a revised 3D map of the University of Lagos as well as land cover change detection analysis. A DJI Phantom 4 UAV was used to collect digital images at a flying height of 90 m, and 75% fore and 65% side overlaps. Ground control points (GCPs) for orthophoto rectification were coordinated with a Trimble R8 Global Navigation Satellite System. Pix4D Mapper was used to produce a digital terrain model and an orthophoto at a ground sampling distance of 4.36 cm. The change detection analysis, using the 2015 base map as reference, revealed a significant change in the land cover such as an increase of 16,306.7 m2 in buildings between 2015 and 2019. The root mean square error analysis performed using 7 GCPs showed a horizontal and vertical accuracy of 0.183 m and 0.157 m respectively. This suggests a high level of accuracy, which is adequate for 3D mapping and change detection analysis at a sustainable cost. (original abstract)
Czasopismo
Rocznik
Numer
Strony
41-61
Opis fizyczny
Twórcy
- University of Lagos, Nigeria
autor
- University of Lagos, Nigeria
autor
- University of Lagos, Nigeria
autor
- University of Lagos, Nigeria
autor
- Imo State University, Nigeria
Bibliografia
- Nex F., Remondino F.: UAV for 3D mapping applications: a review. Applied Geomatics, vol. 6, 2014, pp. 1-15. https://doi.org/10.1007/s12518-013-0120-x.
- Zaragoza M.I., Caroti G., Piemonte A., Riedel B., Tengen D., Niemeier W.: Structure from motion (SfM) processing of UAV images and combination with terrestrial laser scanning, applied for a 3D-documentation in a hazardous situation. Geomatics, Natural Hazards and Risk, vol. 8, issue 2, 2017, pp. 1492-1504.
- Schultz R.J.: Leveling. [in:] Brinker R.Ch., Minnick R. (eds.), The Surveying Handbook. 2nd ed., Springer Science + Business Media, Dordrech 1995, pp. 113-139.
- Wahr J.: Geodesy and Gravity: Class Notes. Samizdat Press, Colorado 1996.
- Luh H.S.: High resolution survey for topographic surveying. IOP Conference Series: Earth and Environmental Science, vol. 18, 2014, 012067. https://doi.org/10.1088/1755-1315/18/1/012067.
- Remondino F., Barazzetti L., Nex F., Scaioni M., Sarazzi D.: UAV Photogrammetry for mapping and 3D modeling - Current status and future perspectives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22, 2011, pp. 25-31. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011.
- Gustafsson H.: Unmanned Aerial Vehicles for Geographic Data Capture: A Review. Examensarbete Teknik, Grundnivå, 15 Hp, Stockholmsverige, 2017. https://www.diva-portal.org/smash/get/diva2:1116742/FULLTEXT01.pdf [access: 27.09.2018].
- Lahoti S., Lahoti A., Saito O.: Application of Unmanned Aerial Vehicle (UAV) for Urban Green Space Mapping in Urbanizing Indian Cities. [in:] Avtar R., Watanabe T. (eds.), Unmanned Aerial Vehicle: Applications in Agriculture and Environment, Springer, Cham 2020, pp. 177-188. https://doi.org/10.1007/978-3-030-27157-2_13.
- Iizuka K., Itoh M., Shiodera S., Matsubara T., Dohar M., Watanabe K.: Advantages of unmanned aerial vehicle (UAV) photogrammetry for landscape analysis compared with satellite data: A case study of postmining sites in Indonesia. Cogent Geoscience, vol. 4(1), 2018, 1498180. https://doi.org/10.1080/23312041.2018.1498180.
- Ruwaimana M., Satyanarayana B., Otero V.M., Muslim A., Syafiq A.M., Ibrahim S. et al.: The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLoS ONE, vol. 13(7), 2018, e0200288. https://doi.org/10.1371/journal.pone.0200288.
- Koeva M., Muneza M., Gevaert C., Gerke M., Nex F.: Using UAVs for map creation and updating. A case study in Rwanda. Survey Review, vol. 50, issue 361, 2018, pp. 312-325. https://doi.org/10.1080/00396265.2016.1268756.
- Sarp G., Erener A., Duzgun S., Sahin K.: An approach for detection of buildings and changes in buildings using orthophotos and point clouds: A case study of Van Erriş earthquake. European Journal of Remote Sensing, vol. 47(1), 2014, pp. 627-642.
- Qin R.: An Object-Based Hierarchical Method for Change Detection Using Unmanned Aerial Vehicle Images. Remote Sensing, vol. 6, 2014, pp. 7911-7932. https://doi.org/10.3390/rs6097911.
- Freire S., Santos T., Navarro A., Soares F., Silva J., Afonso N., Fonseca A., Tenedório J.: Introducing mapping standards in the quality assessment of buildings extracted from very high resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, vol. 90, 2014, pp. 1-9.
- Yao H., Qin R., Chen X.: Unmanned Aerial Vehicle for Remote Sensing Applications - A Review. Remote Sensing, vol. 11, 2019, 1443. https://doi.org/10.3390/rs11121443.
- Akar Ö.: Mapping land use with using Rotation Forest algorithm from UAV images. European Journal of Remote Sensing, vol. 50(1), 2017, pp. 269-279. https://doi.org/10.1080/22797254.2017.1319252.
- Qian Y.G., Zhou W.Q., Yan J.L., Li W.F., Han L.J.: Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, vol. 7(1), 2015, pp. 153-168. https://doi.org/10.3390/rs70100153.
- Jumaat N.F.H., Ahmad B., Dutsenwai H.S.: Land cover change mapping using high resolution satellites and unmanned aerial vehicle. IOP Conference Series: Earth and Environmental Science, vol. 169(1), 2018, 012076. https://doi.org/10.1088/1755-1315/169/1/012076.
- Franklin S.E., Wulder M.A.: Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Progress in Physical Geography: Earth and Environment, vol. 26(2), 2002, pp. 173-205.
- Iheaturu C.J., Ayodele E.G., Okolie C.J.: An Assessment of the Accuracy of Structure-from-Motion (SfM) Photogrammetry for 3D Terrain Mapping. Geomatics, Landmanagement and Landscape, no. 2, 2020, pp. 65-82.
- Smith M.W., Vericat D.: From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from structure-from-motion photogrammetry. Earth Surface Processes and Landforms, vol. 40, no. 12, 2015, pp. 1656-1671.
- Smith M.W., Carrivick J.L., Quincey D.J.: Structure from motion photogrammetry in physical geography. Progress in Physical Geography, vol. 40, no. 2, 2016, pp. 247-275.
- NSSDA: Geospatial Positioning Accuracy Standards. Part 3: National Standard for Spatial Data Accuracy. Federal Geographic Data Committee Secretariat, Reston, Virginia, 1998. https://www.fgdc.gov/standards/projects/accuracy/part3 [access: 28.10.2020].
- Greenwalt C.R., Schultz M.E.: Principles and Error Theory and Cartographic Applications. ACIC Technical Report No. 96, Aeronautical Chart and Information Center, U.S. Air Force, St. Louis 1968.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171613457