Warianty tytułu
Języki publikacji
Abstrakty
We investigate the behaviour of weak solutions of boundary value problems (Dirichlet, Neumann, Robin and mixed) for linear elliptic divergence second order equations in domains extending to infinity along a cone. We find an exponent of the solution decreasing rate: we derive the estimate of the weak solution modulus for our problems near the infinity under assumption that leading coefficients of the equations do not satisfy the Dini-continuity condition.(original abstract)
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
- Borsuk M.V., Transmission problems for elliptic second-order equations in non-smooth domains, Birkhäuser, Basel, 2010.
- Hernandez J., Mancebo F.J., Vega J.M., On the linearization of some singular, nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 777-813.
- Lazer A.C., McKenna P.J., On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730.
- Mityushev V., Adler P., Darcy flow around a two-dimensional lens, I. Phys. A: Math. Gen. 39 (2006), 3545-3560.
- Murray J.D., Mathematical Biology, Springer, Berlin, 1993.
- Nachman A., Callegari A., A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
- Okubo A., Levin S.A., Diffusion and Ecological Problems: Modern Prospectives, Springer, New York, 2001.
- Wiśniewski D., Boundary value problems for a second-order elliptic equation in unbounded domains, Ann. Univ. Paed. Cracov. Studia Math. 9 (2010), 87-122.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171611301