Warianty tytułu
Języki publikacji
Abstrakty
We describe some algorithms, without using resolution of singularities, that establish the rationality of the motivic Igusa zeta series of certain hypersurfaces that are non-degenerated with respect to their Newton polyhedron. This includes, in any characteristic, the motivic rationality for polydiagonal hypersurfaces, vertex singularities, binomial hypersurfaces, and Du Val singularities.(original abstract)
Słowa kluczowe
Twórcy
Bibliografia
- Alsina C., Sikorska J., Santos Tomas M., Norm Derivatives and Characterizations of Inner Product Spaces, World Scientific, Hackensack, New Jersay, 2009.
- Chmieliński J., Wójcik P., On a p-orthogonality, Aequationes Math. 80 (2010), 45-55.
- Chmieliński J., Wójcik P., p-orthogonality and its preservation - revisited, in: Recent Developments in Functional Equation and Inequalities, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2013, pp. 17-30.
- Dragomir S.S., Semi-inner products and applications, Nova Science Publishers, Inc., Hauppauge, New York, 2004.
- Day M.M., Normed linear spaces, Ergeb. Math. Grenzgeb. 21, Springer, New York- Heidelberg, 1973.
- Giles J.R., Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446.
- Lumer G., Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
- Wójcik P., Characterizations of smooth spaces by approximate orthogonalities, Aequationes Math. 89 (2015), 1189-1194.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171610789