Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 30 | 143-179
Tytuł artykułu

The Motivic Igusa Zeta Series Of Some Hypersurfaces Non-Degenerated With Respect To Their Newton Polyhedron

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We describe some algorithms, without using resolution of singularities, that establish the rationality of the motivic Igusa zeta series of certain hypersurfaces that are non-degenerated with respect to their Newton polyhedron. This includes, in any characteristic, the motivic rationality for polydiagonal hypersurfaces, vertex singularities, binomial hypersurfaces, and Du Val singularities.(original abstract)
Rocznik
Tom
30
Strony
143-179
Opis fizyczny
Twórcy
  • University of New York, USA
Bibliografia
  • Artal Bartolo E., Cassou-Noguès P., Luengo I., Melle Hernandez A., Quasi-ordinary power series and their zeta functions, Mem. Amer. Math. Soc. 178 (2005), no. 841, vi+85 pp.
  • Bosch S., Lütkebohmert W., Raynaud M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990.
  • Denef J., Report on Igusa's local zeta function, Séminaire Bourbaki Vol. 1990/91, Astérisque (1991), no. 201-203, Exp. No. 741 (1992), 359-386.
  • Denef J., Hoornaert K., Newton polyhedra and Igusa's local zeta function, J. Number Theory 89 (2001), no. 1, 31-64.
  • Denef J., Loeser F., Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505-537.
  • Denef J., Hoornaert K., Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201-232.
  • Denef J., Hoornaert K., On some rational generating series occurring in arithmetic geometry, in: Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 509-526.
  • Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
  • Guibert G., Espaces d'arcs et invariants d'Alexander, Comment. Math. Helv. 77 (2002), no. 4, 783-820.
  • Hartshorne R., Algebraic geometry, Springer-Verlag, New York, 1977.
  • Igusa J., A stationary phase formula for p-adic integrals and its applications, in: Algebraic geometry and its applications (West Lafayette, IN, 1990), Springer, New York, 1994, pp. 175-194.
  • Igusa J., An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2000.
  • Lichtin B., Meuser D., Poles of a local zeta function and Newton polygons, Compositio Math. 55 (1985), no. 3, 313-332.
  • Matsumura H., Commutative ring theory, Cambridge University Press, Cambridge, 1986.
  • Saia M.J., Zuniga-Galindo W.A., Local zeta function for curves, non-degeneracy conditions and Newton polygons, Trans. Amer. Math. Soc. 357 (2005), no. 1, 59-88.
  • Schoutens H., Classifying singularities up to analytic extensions of scalars is smooth, Ann. Pure Appl. Logic 162 (2011), 836-852.
  • Schoutens H., Schemic Grothendieck rings I: motivic sites, Preprint 2011.
  • Schoutens H., Schemic Grothendieck rings II: jet schemes and motivic integration, Preprint 2011.
  • Varchenko A., Zeta-function of monodromy and Newton's diagram, Invent. Math. 37 (1976), no. 3, 253-262.
  • Veys W., Poles of Igusa's local zeta function and monodromy, Bull. Soc. Math. France 121 (1993), no. 4, 545-598.
  • Veys W., Determination of the poles of the topological zeta function for curves, Manuscripta Math. 87 (1995), no. 4, 435-448.
  • Zûniga-Galindo W., Igusa's local zeta functions of semiquasihomogeneous polynomials, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3193-3207.
  • Zûniga-Galindo W., Local zeta functions and Newton polyhedra, Nagoya Math. J. 172 (2003), 31-58.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171610775
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.