Warianty tytułu
Języki publikacji
Abstrakty
In paper [4] there are considered random dynamical systems with randomly chosen jumps acting on Polish spaces. The intensity of this process is a constant A. In this paper we formulate criteria for the existence of an invariant measure and asymptotic stability for these systems in the case when A is not constant but a Lipschitz function.(original abstract)
Twórcy
autor
- University of Silesia in Katowice, Poland
Bibliografia
- Davis M.H.A., Markov Models and Optimization, Chapman and Hall, London, 1993.
- Diekmann O., Heijmans H.J., Thieme H.R., On the stability of the cells size distribution, J. Math. Biol. 19 (1984), 227-248.
- Horbacz K., Asymptotic stability of a system of randomly connected transformations on Polish spaces, Ann. Polon. Math. 76 (2001), 197-211.
- Horbacz K., Invariant measures for random dynamical systems, Dissertationes Math. 451 (2008), 68 pp.
- Kazak J., Piecewise-deterministic Markov processes, Annales Polonici Mathematici 109 (2013), 279-296.
- Lasota A., Yorke J.A., Lower Bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77.
- Lipniacki T., Paszek P., Marciniak-Czochra A., Brasier A.R., Kimel M., Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006), 348-367.
- Snyder D., Random Point Processes, Wiley, New York, 1975.
- Szarek T., Invariant measures for nonexpansive Markov operators on Polish spaces, Dissertationes Math. 415 (2003), 62 pp.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171610589