Warianty tytułu
Języki publikacji
Abstrakty
Let £ > 2 be a prime number. Let K be a number field containing a unique £-adic prime and assume that its class is an £th power in the class group CK . The main theorem of the paper gives a sufficient condition for a finite set of primes of K to be the wild set of some Hilbert self-equivalence of K of degree £.(original abstract)
Słowa kluczowe
Twórcy
autor
- University of Silesia in Katowice, Poland
autor
- University of Silesia in Katowice, Poland
autor
- University of Silesia in Katowice, Poland
Bibliografia
- Cassels J.W., Fröhlich A., Algebraic Number Theory, Academic Press, London, 1967.
- Czogała A., Sładek A., Higher degree Hilbert symbol equivalence of number fields, Tatra Mountains Math. Publ. 11 (1997), 77-88.
- Czogała A., Sładek A., Higher degree Hilbert symbol equivalence of number fields II, J. Number Theory 72 (1998), 363-376.
- Czogała A., Higher degree tame Hilbert-symbol equivalence of number fields,. Abh. Math. Sem. Univ. Hamburg 69 (1999), 175-185.
- Czogała A., On reciprocity equivalence of quadratic number fields, Acta Arith. 58 (1991), 27-46.
- Czogała A., Witt rings of Hasse domains o global fields, J. Algebra 244 (2001), 604-630.
- Czogała A., Rothkegel B., Wild primes of a self-equivalence of a number field, Acta Arith. 166 (2014), 27-46.
- LeepD.B., WadsworthA.R., The Hasse norm theorem mod squares, J. Number Theory 42 (1991), 337-348.
- Milnor J., Algebraic K-Theory and quadratic forms, Invent. Math. 9 (1970), 318-344.
- Neukirch J., Class Field Theory, Springer-Verlag, Berlin, 1986.
- Perlis R., Szymiczek K., Conner P., Litherland R., Matching Witts with global fields, Contemp. Math. 155 (1994), 365-387.
- Rothkegel B., Czogała A., Singular elements and the Witt equivalence of rings of algebraic integers, Ramanujan J. 17 (2008), 185-217.
- Somodi M., On the size of the wild set, Canad. J. Math. 55 (2005), 180-203.
- Somodi M., A characterization of the finite wild sets of rational self-equivalences, Acta Arith. 121 (2006), 327-334.
- Somodi M., Self-equivalences of the Gaussian field, Rocky Mountain J. Math. 38 (2008), 2077-2089.
- Sładek A., Hilbert symbol equivalence and Milnor K-functor, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 183-190.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171610583