Warianty tytułu
Języki publikacji
Abstrakty
Aim/purpose - This paper investigates the accuracy of leading indicators in the case of the 2001 sovereign default crisis and the 2018 currency turmoil in Argentina. Design/methodology/approach - In this paper, we conducted early warning signals analysis based on a-priori selected variables. For each of the macroeconomic variables, we computed yearly changes and selected the threshold to minimise the noise-to-signal ratio, i.e. the ratio of percentage of false signals in 'normal' times to percentage of good signals in a two-year period preceding each of the crises. Findings - The predictive power of indicators differs significantly in various crisis epi-sodes. For the 2001 crisis, the decline in value of bank deposits was the best leading indicator based on the noise-to-signal ratio. For the 2018 currency crisis, the lowest noise-to-signal ratio was observed for the lending-deposit rate ratio. Research implications/limitations - The survey is limited mostly by the data availability and their quality. Originality/value/contribution - This paper gives a complex review of the major early warning indicators in the context of the most recent history of Argentina's economy. It applies a set of classical leading indicators to two modern cases of financial crises. The paper proposes an original 'knocking the window' approach to the presentation of traditional warning concepts in the context of current economic events. (original abstract)
Rocznik
Numer
Strony
20-47
Opis fizyczny
Twórcy
autor
- University of Warsaw, Poland
autor
- University of Warsaw, Poland
Bibliografia
- Antunes, A., Bonfim, D., Monteiro, N., & Rodrigues, P. M. M. (2018). Forecasting banking crises with dynamic panel probit models. International Journal of Forecasting, 34(2), 249-275. https://doi.org/10.2139/ssrn.2834967
- Argentina's banks rue the loss of last year's future. (2018). Retrieved January 31, 2020 from https://www.euromoney.com/article/b1bjq794sckc11/argentinas-banks-rue-the-loss-of-last-years-future
- Beutel, J., List, S., & von Schweinitz, G. (2018). An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions? (Discussion Papers 48/2018). Berlin: Deutsche Bundesbank. Retrieved August 14, 2020, from https://ssrn.com/abstract=3312608
- Bluwstein, K., Buckmann, M., Joseph, A., Kang, M., Kapadia, S., & Simsek, O. (2020). Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach (Working Paper, No. 848). London: Bank of England. Re- trieved August 14, 2020 from https://ideas.repec.org/p/boe/boeewp/0848
- Brauning, M., Malikkidou, D., Scricco, G., & Scalone, S. (2019). A new approach to Early Warning Systems for small European banks (Working Paper Series, No. 2348). Brussels: European Central Bank. Retrieved August 14, 2020 from https://EconPapers.repec.org/RePEc:ecb:ecbwps:20192348.html
- Bruggemann, A., & Linne, T. (1999). How good are leading indicators for currency and banking crises in Central and Eastern Europe? An empirical test (IWH Discussion Papers 95). Halle (Saale): Leibniz-Institut fur Wirtschaftsforschung Halle (IWH). Retrieved August 14, 2020 from https://ideas.repec.org/p/zbw/iwhdps/iwh-95.html
- Calvo, G. A. (1995). Varieties of capital-market crises (Working Paper, No. 306). Washington: Inter-American Development Bank. Retrieved August 14, 2020 from https://econpapers.repec.org/paper/idbwpaper/4008.html
- Calvo, S., & Reinhart, C. (1996). Capital flows to Latin America: Is there evidence of contagion effects? (Policy Research Working Paper, No. 1619). Washington: World Bank. Retrieved August 14, 2020 from https://ideas.repec.org/p/wbk/ wbrwps/1619.html
- Casabianca, E. J., Catalano, M., Forni, L., Giarda, E., & Passeri, S. (2019). An Early Warning System for banking crises: From regression-based analysis to machine learning techniques (Marco Fanno Working Papers, No. 235). Retrieved August 14, 2020 from https://ideas.repec.org/p/pad/wpaper/0235.html
- Central Bank of the Argentine Republic. (2019). Statistics. Retrieved January 31, 2020 from http://www.bcra.gob.ar
- Chang, R., & Velasco, A. (2001). A model of financial crises in emerging markets. The Quarterly Journal of Economics, 116, 489-517. https://doi.org/10.1162/00335530151144087
- Danieli, L., & Jakubik, P. (2018). Early warning system for the European Insurance Sector (EIOPA Financial Stability Report - Thematic Articles 13). Frankfurt am Main: Risks and Financial Stability Department, EIOPA. Retrieved August 14, 2020 from https://ideas.repec.org/p/eio/thafsr/13.html
- Dornbusch, R., Goldfajn, I., & Valdes, R. O. (1995). Currency crises and collapses. Brookings Papers on Economic Activity, 26(2), 219-294. Retrieved August 14, 2020 from https://ideas.repec.org/a/bin/bpeajo/v26y1995i1995-2p219-294.html
- Eichengreen, B., & Arteta, C. (2000). Banking crises in emerging markets: presumptions and evidence (Working Paper C00-115). Berkeley: Center for International and Development Economics Research. Retrieved August 14, 2020 from https:// ideas.repec.org/p/wpa/wuwpma/0012012.html
- Evans, O., Leone, A. M., Gill, M., & Hilbers, P. (2000). Macroprudential indicators of financial system soundness (Occasional Paper, No. 192). Washington: IMF. https://doi.org/10.5089/9781557758910.084
- Federal Reserve Economic Data. (2019). FRED Economic Data. St. Louis: Federal Reserve Bank. Retrieved January 31, 2020 from https://fred.stlouisfed.org/
- Frankel, J. A., & Rose, A. K. (1996). Currency crashes in emerging markets: Empirical indicators (Working Paper, No. 5437). Cambridge, MA: NBER. https://doi.org/10.3386/w5437
- Gerlach, S., & Smets, F. (1994). Contagious speculative attacks. European Journal of Political Economy, 11, 45-63. https://doi.org/10.1016/0176-2680(94)00055-O
- Hermansen, M., & Rohn, O. (2017). Economic resilience: The usefulness of early warn- ing indicators in OECD countries. OECD Journal: Economic Studies, 2016(1), 9-35. https://doi.org/10.1787/5jrxhgfqx3mv-en
- Holopainen, M., & Sarlin, P. (2017). Toward robust early-warning models: A horse race, ensembles and model uncertainty. Quantitative Finance, Taylor & Francis Jour- nals, 17(12), 1933-1963. https://doi.org/10.1080/14697688.2017.1357972
- Hutchison, M., & McDill, K. (1999). Are all banking crises alike? The Japanese experi- ence in international comparison (Working Paper, No. 7253). Cambridge, MA: NBER. Retrieved August 14, 2020 from http://papers.nber.org/papers/w7253
- Inske, P. (2016). Forecasting euro area recessions in real-time (Kiel Working Paper, No. 2020). Kiel: Kiel Institute for the World Economy. Retrieved August 14, 2020 from http://hdl.handle.net/10419/126154
- Investing.com. (2020). Currencies. Retrieved August 14, 2020 from https://www. investing.com/currencies/usd-ars-historical-data
- Jarmulska, B. (2020). Random forest versus logit models: Which offers better early warning of fiscal stress? (Working Paper Series, No. 2408). Brussels: European Central Bank. Retrieved August 14, 2020 from https://ideas.repec.org/p/ecb/ ecbwps/20202408.html
- Kaminsky, G., & Reinhart, C. (1999). The twin crises: The causes of banking and balance-of-payments problems. The American Economic Review, 89(3), 473-500. https://doi.org/10.1257/aer.89.3.473
- Kaminsky, G., Lizondo, S., & Reinhart, C. (1997). Leading indicators of currency crises (Staff Papers 45). Washington: IMF. https://doi.org/10.1596/1813-9450-1852
- Krugman, P. (1979). A model of balance-of-payments crises. Journal of Money, Credit and Banking, 11(3), 311-325. https://doi.org/10.2307/1991793
- Łupiński, M. (2019). Wskaźniki wczesnego ostrzegania przed niestabilnością finansową polskiego sektora bankowego [Early warning indicators of the financial instability of the Polish banking sector]. Collegium of Economic Analysis Annals, 55, 99-113. Retrieved August 14, 2020 from https://ideas.repec.org/a/sgh/annals/i55y2019p99- 113.html
- Manasse, P., Roubini, N., & Schimmelpfennig, A. (2003). Predicting sovereign debt crises (Working Paper, No. 221). Washington: IMF. https://doi.org/10.5089/9781 451875256.001
- Marjanović, I., & Marković, M. (2019). Determinants of currency crises in the Republic of Serbia. Proceedings of Rijeka Faculty of Economics, 37(1), 191-212. https:// doi.org/10.18045/zbefri.2019.1.191
- Minguez, J. G., & Carrascal, C. M. (2019). A crisis early warning model for euro area countries. Economic Bulletin, Banco de Espana, 4, 1-13. Retrieved August 14, 2020, from https://ideas.repec.org/a/bde/journl/y2019i12daan35.html
- Musdholifah, M., & Hartono, U. (2017). Assessing early warning system model for banking crisis in ASEAN countries. International Journal of Economics and Fi- nancial Issues, Econjournals, 7(4), 358-364. Retrieved August 14, 2020 from https://ideas.repec.org/a/eco/journ1/2017-04-45.html
- Obstfeld, M. (1986). Rational and self-fulfilling balance-of-payments crises. The American Economic Review, 76(1), 72-81. Retrieved August 14, 2020 from www.jstor.org/stable/1804128
- Obstfeld, M. (1995). Models of currency crises with self-fulfilling features (Working Paper, No. 5285). Washington: NBER. https://doi.org/10.1016/0014-2921(95)00111-5
- OECD report. (2019). Argentina. OECD Economic surveys. Retrieved August 14, 2020, from http://www.oecd.org/economy/argentina-economic-snapshot/
- Papadopoulos, S., Stavroulias, P., Sager, T., & Baranoff, E. (2017). A ternary-state early warning system for the European Union (Working Papers, No. 222). Athens: Bank of Greece. Retrieved August 14, 2020 from https://ssrn.com/abstract=3268100
- Peltonen, T. A., Sarlin, P., & Piloiu, A. (2015). Network linkages to predict bank distress (Working Paper Series, No. 1828). Brussels: European Central Bank. https:// doi.org/10.1016/j.jfs.2016.10.011
- Sigmund, M., & Stein, I. (2017). What predicts financial (in)stability? A Bayesian approach. Credit and Capital Markets, 50(3), 299-336. https://doi.org/10.3790/ ccm.50.3.299
- Sondermann, D., & Zorell, N. (2019). A macroeconomic vulnerability model for the euro area (Working Paper Series, No. 2306). Brussels: European Central Bank. Retrieved August 14, 2020 from https://ideas.repec.org/p/ecb/ecbwps/20192306.html
- Stanley, L. E. (2018). Argentina. In L. E. Stanley, Emerging market economies and financial globalization. Argentina, Brasil, China, India and South Korea (pp. 89109). London: Anthem Press. https://doi.org/10.2307/j.ctt216683k.1
- The World Bank. (2019). Global Economic Monitor. Retrieved January 31, 2020 from https://datacatalog.worldbank.org/dataset/global-economic-monitor
- Tóló, E. (2019). Predicting systemic financial crises with recurrent neural networks (Research Discussion Papers, 14/2019). Bank of Finland. https://doi.org/10.1016/ j.jfs.2020.100746
- Tomczyńska, M. (2000). Early indicators of currency crises. Review of some literature (Studies & Analyses CASE No. 208). Warsaw: Center for Social and Economic Research. Retrieved August 14, 2020 from https://www.files.ethz.ch/isn/138378/ SA208.pdf
- Wang, P., Zong, L., & Ma, Y. (2019). An integrated early warning system for stock market turbulence (Papers 1911.12596, arXiv.org). https://doi.org/10.1016/j.eswa. 2020.113463
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171610193