Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | vol. 20, iss. 1 | 531-543
Tytuł artykułu

A Comparison of Variables Selection Methods and their Sequential Application: A Case Study of the Bankruptcy of Polish Companies

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Research background: Even though in recent decades, a lot of new techniques were developed, there is still a lack of studies aimed at comparing the performance of variable selection methods. Bankruptcy prediction is an excellent example of the conservative research field with the tendency to use classical approaches. Although the results of studies in this field are directly applied in banks and other financial institutions, variables selected for these models can be biased by the author's preference for one technique. Purpose: This work aims to compare different variable selection approaches and introduce a new methodology of sequential variable selection that can be applied when the low-dimensional model is preferred. Research methodology: This study has been conducted on Polish companies' insolvency data from the period of 2007-2013. The risk has been modeled with logistic regression; hence variables have been selected with approaches suitable for linear models. Results: The one-step methods did not lead to sufficient dimensionality reduction, while the sequential approach provided compact models keeping the high-performance level. Also, this method allowed us to identify the main financial determinants of insolvency for studied companies, which are the volume of total assets and the ratio of profit to total assets. Novelty: This paper compares different variable selection methods and demonstrates the effectiveness of their sequential application for dimensionality reduction. (original abstract)
Rocznik
Strony
531-543
Opis fizyczny
Twórcy
  • University of Warsaw
Bibliografia
  • Alaka, H.A., Oyedele, O.L. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184. DOI: 10.1016/j.eswa.2017.10.040.
  • Altman, E.I. (1968). Financial Ratios, Discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23 (4).
  • Barboza, F., Kimura, H., Altman, E. (2017). Machine learning models and bankruptcy prediction. Expert Systems with Applications, 83, 405-417. DOI: 10.1016/j.eswa.2017.04.006.
  • Fleiss, J.L., Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33, 613-619.
  • Friedman, J., Hastie, T., Tibshirani, R. (2013). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. The Mathematical Intelligencer, 27 (2), 83-85. DOI: 10.1007/BF02985802.
  • Greenberg, E. (2012). Introduction to Bayesian Econometrics. New York, NY: Cambridge University Press. DOI: 10.1017/CBO9781139058414.
  • Gruszczyński, M. (ed.) (2012). Mikroekonometria. Modele i metody analizy danych indywidualnych. Warszawa: Wolters Kluwer Polska.
  • Gruszczyński, M. (2003). Modele mikroekonometrii w analizie i prognozowaniu zagrożenia finansowego przedsiębiorstw. Zeszyty Polskiej Akademii Nauk, 34.
  • Hołda, A. (2000). Optymalizacja i model zastosowania procedur analitycznych w rewizji sprawozdań finansowych. Kraków: Akademia Ekonomiczna.
  • Höglund, H. (2017). Tax payment default prediction using genetic algorithm-based variable selection. Expert Systems with Applications, 88, 368-375. DOI: 10.1016/j.eswa.2017.07.027.
  • Iturriaga, F.L., Sanz, I.P. (2015). Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks. Expert Systems with Applications, 42 (6), 2857-2869. DOI: 10.1016/j.eswa.2014.11.025.
  • Jolliffe, I. (2011). Principal Component Analysis. In: M., Lovric (ed.), International Encyclopedia of Statistical Science. Berlin-Heidelberg: Springer. DOI: 10.1007/978-3-642-04898-2_455.
  • Karr, C. (1995). Adaptive control of an exothermic chemical reaction system using fuzzy logic and genetic algorithms. In: L.R., Medsker (ed.), Hybrid intelligent systems (pp. 187-203). New York, NY: Springer US.
  • Mączyńska, E., Zawadzki, M. (2006). Dyskryminacyjne modele predykcji bankructwa przedsiębiorstw. Ekonomista, 2, 205-235.
  • McFadden, D.L. (1974). Conditional logit analysis of qualitative choice behaviour. Frontiers in econometrics (pp. 105-142). New York: Academic Press.
  • Merton, R. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. Journal of Finance, 29, 449-470.
  • Merwin, C. (1942). Financing small corporations in five manufacturing industries, 1926-1936. New York: National Bureau of Economic Research.
  • Obermann, L., Waack, S. (2015). Bankruptcy visualization and prediction using neural networks: A study of U.S. commercial banks. Expert Systems with Applications, 42 (23), 9117-9128. DOI: 10.1016/j.eswa.2015.08.009.
  • Ohlson, J. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18 (1), 109-131. DOI: 10.2307/2490395.
  • Pereira, J., Basto, M., Ferreira, A. (2016). The Logistic Lasso and Ridge Regression in Predicting Corporate Failure. Procedia Economics and Finance, 39, 634-641. DOI: 10.1016/S2212-5671(16)30310-0.
  • Prusak, B. (2005). Nowoczesne metody prognozowania zagrożenia finansowego przedsiębiorstwa. Warszawa: Difin.
  • Rutenbar, R.A. (1989). Simulated annealing algorithms: an overview. IEEE Circuits and Devices Magazine, 5 (1), 19-26. DOI: 10.1109/101.17235.
  • Smith, R., Winakor, A. (1935). Changes in financial structure of unsuccessful industrial corporations. The Accounting Review, 10 (2), 174-184.
  • Shin, K., Lee, Y. (2002). A genetic algorithm application in bankruptcy prediction modelling. Expert Systems with Applications, 23 (3), 321-328. DOI: 10.1016/S0957-4174(02)00051-9.
  • Sun, J., Hui, L. (2014). Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. KnowledgeBased Systems, 57, 41-56. DOI: 10.1016/j.knosys.2013.12.006.
  • Tian, S. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89-100. DOI: 10.1016/j.jbankfin.2014.12.003.
  • Traczynski, J. (2017). Firm Default Prediction: A Bayesian Model-Averaging Approach. Journal of Financial and Quantitative Analysis, 52 (3), 1211-1245. DOI: 10.1017/S002210901700031X.
  • Zieba, M., Tomczak, S.K., Tomczak, J.M. (2016). Ensemble Boosted Trees with Synthetic Features Generation in Application to Bankruptcy Prediction. Expert Systems with Applications, 58, 93-101. DOI: 10.1016/j.eswa.2016.04.001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171600917
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.