Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 48 | 22
Tytuł artykułu

Automation, Partial and Full

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When some steps of a complex, multi-step task are automated, the demand for human work in the remaining complementary sub-tasks goes up. In contrast, when the task is fully automated, the demand for human work declines. Partial automatability of complex tasks leads to a bottleneck of development (where further growth is constrained by the scarcity of essential human work) which is removed once the tasks become fully automatable. Theoretical analysis using a two-level nested CES production function specification demonstrates that the shift from partial to full automation generates anon-convexity: humans and machines switch from complementary to substitutable, and the share of output accruing to human workers switches from an upward to a downward trend. This process has implications for inequality, the risk of technological unemployment and the likelihood of a secular stagnation. (original abstract)
Rocznik
Numer
Strony
22
Opis fizyczny
Twórcy
  • Szkoła Główna Handlowa w Warszawie; Narodowy Bank Polski
Bibliografia
  • Acemoglu D., and D. Autor, (2011): Skills, Tasks and Technologies: Implications for Employment and Earnings, in: Handbook of Labor Economics, ed. by O. Ashenfelter, and D. Card, vol. 4, chap. 12, pp. 1043-1171. Elsevier.
  • Acemoglu D., and P. Restrepo, (2018): The Race Between Man and Machine: Implications of Technology for Growth, Factor Shares and Employment, American Economic Review, 108, 1488-1542.
  • Aghion P., B.F. Jones, and C.I. Jones, (2019): Artificial Intelligence and Economic Growth, in: The Economics of Artificial Intelligence: An Agenda, ed.by A. Agrawal, J. Gans, and A. Goldfarb, pp. 237-282. University of Chicago Press.
  • Andrews D., C. Criscuolo, and P.N. Gal, (2016): The Global Productivity Slowdown, Technology Divergence and Public Policy: A Firm Level Perspective, Working Party no. 1 on macroeconomic and structural policy analysis, OECD.
  • Arntz M., T. Gregory, and U. Zierahn, (2016): The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis, OECD Social, Employment and Migration Working Paper No 189, OECD Publishing, Paris.
  • Autor D., (2019): Work of the Past, Work of the Future: Richard T. Ely Lecture, American Economic Association: Papers and Proceedings, 109, 1-32.
  • Autor D., D. Dorn, L. F. Katz, C. Patterson, J. Van Reenen, (2017): The Fall of the Labor Share and the Rise of Superstar Firms, Working Paper No. 23396, NBER.
  • Autor D., and A. Salomons, (2018): Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share, Brookings Papers on Economic Activity, Spring 2018, 1-63.
  • Autor D. H., and D. Dorn, (2013): The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market, American Economic Review, 103(5),1553-97.
  • Barkai S., (2017): Declining Labor and Capital Shares, Job market paper, University of Chicago.
  • Benzell S.G., and E. Brynjolfsson, (2019): Digital Abundance and Scarce Genius: Implications for Wages, Interest Rates, and Growth, Working paper, MIT Initiative on the Digital Economy.
  • Benzell S. G., L. J. Kotlikoff, G. LaGarda, and J. D. Sachs, (2015): Robots Are Us: Some Economics of Human Replacement, Working Paper No.20941, NBER.
  • Berg A., E.F. Buffie, and L.-F. Zanna, (2018): Should We Fear the Robot Revolution? (The Correct Answer is Yes), Journal of Monetary Economics, 97,117-148.
  • Brynjolfsson E., and A. McAfee, (2014):The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton & Co.
  • DeCanio S.J., (2016): Robots and Humans - Complements or Substitutes?, Journal of Macroeconomics, 49, 280-291.
  • Frey C.B., and M. Osborne, (2017): The Future of Employment: How Susceptible Are Jobs to Computerization? Technological Forecasting and Social Change,114, 254-280.
  • Gillings M.R., M. Hilbert, and D.J. Kemp, (2016): Information in the Biosphere: Biological and Digital Worlds, Trends in Ecology and Evolution, 31,180-189.
  • Gordon R.J., (2016):The Rise and Fall of American Growth: The U.S. Standard of Living since the Civil War, Princeton University Press.
  • Grace K., (2013): Algorithmic Progress in Six Domains, Technical report 2013-3, Berkeley, CA: Machine Intelligence Research Institute.
  • Graetz G., and G. Michaels, (2018): Robots at Work, Review of Economics and Statistics, 100, 753-768.
  • Growiec J.(2019): The Hardware-Software Model: A New Conceptual Framework of Production, R&D and Growth with AI, KAE WP 2019/042, SGH Warsaw School of Economics.
  • Hemous D., and M. Olsen, (2018): The Rise of the Machines: Automation, Horizontal Innovation and Income Inequality, Working paper, University of Zurich.
  • Hilbert M., and P. Lopez, (2011): The World's Technological Capacity to Store, Communicate, and Compute Information, Science, 332, 60-65.
  • Jones C.I., (2002): Sources of U.S. Economic Growth in a World of Ideas, American Economic Review, 92, 220-239.
  • Jones C.I., and J. Kim, (2018): A Schumpeterian Model of Top Income Inequality, Journal of Political Economy, 126, 1785-1826.
  • Klump R., and O. de La Grandville, (2000): Economic Growth and the Elasticity of Substitution: Two Theorems and Some Suggestions, American Eco-nomic Review, 90, 282-291.
  • Klump R., P. McAdam, and A. Willman, (2012): Normalization in CES Production Functions: Theory and Empirics, Journal of Economic Surveys, 26,769-799.
  • Kurzweil R., (2005):The Singularity is Near. New York: Penguin.
  • Miyagiwa K., and C. Papageorgiou, (2007): Endogenous Aggregate Elasticityof Substitution, Journal of Economic Dynamics and Control, 31, 2899-2919.
  • Nordhaus W.D., (2017): Are We Approaching an Economic Singularity? Infor-mation Technology and the Future of Economic Growth, Working paper, Cowles Foundation, Yale University.
  • Sachs J.D., S.G. Benzell, and G. LaGarda, (2015): Robots: Curse or Blessing? A Basic Framework, Working Paper Np. 21091, NBER.
  • Silver D., T. Hubert, J. Schrittwieser, et al., (2018): A General Reinforcement Learning Algorithm That Masters Chess, Shogi, and Go Through Self-Play, Science, 362, 1140-1144.
  • Tegmark M., (2017): Life 3.0: Being Human in the Age of Artificial Intelligence. New York: Knopf.
  • Xue J., and C.K. Yip, (2013): Aggregate Elasticity of Substitution and Economic Growth: A Synthesis, Journal of Macroeconomics, 38, 60-75.
  • Yudkowsky E., (2013): Intelligence Explosion Microeconomics, Technical report 2013-1, Machine Intelligence Research Institute.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171592255
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.