Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | nr 32 | 200-213
Tytuł artykułu

Segmentation of Small and Medium Size Regional Companies Using Data Mining Approach as a Tool for Optimising the Activities of European Regional Development Agencies

Treść / Zawartość
Warianty tytułu
Możliwości segmentacji małych i średnich przedsiębiorstw w regionie z wykorzystaniem podejścia data mining jako narzędzia optymalizacji działalności europejskich agencji rozwoju regionalnego
Języki publikacji
EN
Abstrakty
Ważnym beneficjentem środków UE wspierających rozwój konkurencyjności opartej na innowacji są firmy sektora MŚP, zróżnicowane zarówno pod względem rodzaju działalności, jak i otoczenia konkurencyjnego. Obecnie Agencje Rozwoju Regionalnego oraz Innowacji poszczególnych krajów, regionów UE i państw stowarzyszonych podejmują decyzje o rodzaju i skali udzielanego wsparcia firmom MŚP w oparciu o niejednorodne zasoby danych, wykorzystując odmienne kryteria segmentacji MŚP. Celem artykułu jest uzasadnienie konieczności i technicznych możliwości stworzenia, w oparciu o zasoby informacyjne (bazy danych) Agencji Rozwoju Regionalnego, koherentnego i inteligentnego narzędzia do segmentacji MŚP, które pozwoliłoby nie tylko na monitorowanie udzielanego wsparcia, ale też na uczynienie regionalnego wsparcia bardziej efektywnym (beneficjentem wsparcia byłyby rzeczywiste innowacyjne przedsiębiorstwa). Przeprowadzono analizę metod segmentacji MŚP stosowanych obecnie w Agencjach Rozwoju Regionalnego przez 18 regionów europejskich i stowarzyszonych. W konsekwencji porównano podejścia stosowane do segmentacji MŚP przez 15 krajów oraz Komisję Europejską. Dane do analiz pozyskano metodą sondażu (ankieta online) z Agencji Rozwoju Regionalnego oraz Komisji Europejskiej.
EN
The important beneficiaries of the EU funding that support the development of competitiveness based on innovation are Small and Medium Size Companies (SMEs). Their profiles may vary with respect to the type of business and the competitive environment. Currently, Regional Development and Innovation Agencies operating in the regions of the EU and in associated countries decide about the type and scale of financial support provided to SMEs on the basis of heterogeneous data resources, applying different SME segmentation criteria. The purpose of this article is to justify the necessity and technical possibilities of creating a coherent and intelligent tool for the segmentation of Small and Medium Size Companies, with the support of Regional Development Agency databases. This would allow to monitor the process of providing regional companies with innovative support and would increase the effectiveness of this support (the beneficiaries of the support would be the companies working most effectively on innovations). The analysis of the SME segmentation methods currently used in 18 different European Regional Development Agencies and associated regions was carried out. Furthermore, the approaches to SME segmentation in 15 countries and the European Commission were compared.(original abstract)
Rocznik
Numer
Strony
200-213
Opis fizyczny
Twórcy
  • Cracow University of Technology
autor
  • Cracow University of Technology
Bibliografia
  • 1. Balcerzak A.P., Pietrzak M.B. (2016), Quality of Institutions for Knowledge-based Economy within New Institutional Economics Framework. Multiple Criteria Decision Analysis for European Countries in the Years 2000-2013, "Economics & Sociology", Vol. 9, No. 4. DOI: 10.14254/2071-789X.2016/9-4/4.
  • 2. Bas A., Yüzer M.A. (2014), An Anaylsis in Order to Measure of Regional Development Agencies Performance and Their Impacts to the Regional Growth in Turkey. 54th Congress of the European Regional Science Association, "Regional Development & Globalisation: Best Practices", http://hdl.handle.net/10419/124502 (accessed: 05.10.2018).
  • 3. Becker B., Hall S.G. (2013), Do R&D Strategies in High-Tech Sectors Differ from Those in Low-Tech Sectors? An Alternative Approach to Testing the Pooling Assumption, "Economic Change and Restructuring", Vol. 46, No. 2. DOI: 10.1007/s10644-012-9122-7.
  • 4. Becker B., Roper S., Love J.H. (2017), The Effectiveness of Regional, National and EU Support for Innovation in the UK and in Spain, https://research. aston.ac.uk/portal/ en/researchoutput/the-effectiveness-of-regional-national-and-eu-support-for-innovation-in-the-uk-and-in-spain(b3da2534-b758-4078-953e-7b0eec908bf0).html (accessed: 05.10.2018).
  • 5. Brzozowska A., Kabus J. (2018), Determinants of Enterprises' Innovativeness in the Light of Empirical Studies -Case Studies of Austria and Poland, "Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska", No. 116. http://yadda.icm.edu.pl/yadda/element/ bwmeta1.element.baztech-2793e179-05ca-499f-a923-ef40c09bb13d (accessed: 05.10.2018).
  • 6. Conti A. (2018), Entrepreneurial Finance and the Effects of Restrictions on Government R&D Subsidies, "Organization Science", Vol. 29, No. 1. DOI: 10.1287/orsc.2017.1168.
  • 7. Council on Competitiveness (2005), Measuring regional innovation: a Guidebook for Conducting Regional Innovation Assessments, U.S. Department of Commerce Economic Development Administration, Washington, http://www.compete.org/reports/all/212-measuring-regional-innovation (accessed: 05.10.2018).
  • 8. Czarnitzki D., Lopes-Bento C. (2011), Innovation Subsidies: Does the Funding Source Matter for Innovation Intensity and Performance? Empirical Evidence from Germany, "SSRN Electronic Journal", http://doi.org/ 10.2139/ssrn.1908764 (accessed: 05.10.2018).
  • 9. Dijkstra L., Athanasoglou S. (2015), The Europe 2020 Index: The Progress of EU Countries, Regions and Cities to the 2020 Targets, "Regional Focus", No. 01/2015, http://ec.europa.eu/ regional_policy/index_en.htm (accessed: 05.10.2018).
  • 10. Directorate-General for Research and Innovation (2014), State of the Innovation Union: Taking stock 2010-2014, "Commission Staff Working Document". DOI: 10.2777/74073.
  • 11. EARTO (2018), Openness of Government Data -Today's Reality, "EARTO Position Paper on EC Proposal for a revised PSI Directive", European Association of Research and Technology Organisations, http://www.earto.eu/fileadmin/content/03_Publications/2018/ EARTO_Background_Note_-_Openness_of_Government_Data_and_Innovation_ Performance_pdf (accessed: 05.11.2018).
  • 12. Engelhardt A.-K., Bijleveld D.P. (2013), Benchmarking Regional Innovation in the light of the Europe 2020 Agenda The case of Twente, "Master thesis", https://essay.utwente.nl/63637/1/Dissertation_Engelhardt.pdf (accessed: 05.10.2018).
  • 13. European Commission (2018), Europe 2020 strategy, https://ec.europa.eu/ info/ business-economy-euro/economic-and-fiscal-policy-coordination/eu-economic-governance-monitoring-prevention-correction/european-semester/framework/europe-2020-strategy_en (accessed: 05.10.2018).
  • 14. Foreman-Peck J. (2012), Effectiveness and Efficiency of SME Innovation Policy, "Cardiff Economics Working Papers", https://ideas.repec.org/p/cdf/ wpaper/2012-4.html (accessed: 08.11.2018).
  • 15. H2020 Programme (2016), Guidelines on FAIR Data Management in Horizon 2020. http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf (accessed: 05.10.2018).
  • 16. Hall B., Lerner J. (2009), The Financing of R&D and Innovation, "NBER Working Paper Series", No. 15325, http://www.nber.org/papers/w15325.pdf (accessed: 05.10.2018).
  • 17. Hollanders H., Es-Sadki N. (2018), European Innovation Scoreboard 2018, https://ec.europa.eu/ docsroom/documents/30281 (accessed: 05.10.2018).
  • 18. Huggins R. (2010), Regional Competitive Intelligence: Benchmarking and Policymaking, "Regional Studies", Vol. 44, No. 5. DOI: 10.1080/10408398.2014.971353.
  • 19. Kaufman A. (2002), How Effective Is Innovation Support for Smes? An Analysis of the Region of Upper Austria, "The Journal of Technology Transfer", Vol. 22, No. 2. DOI: 10.1023/A.
  • 20. Navarro M., Gibaja J.J., Franco S., Murciego A., Gianelle C., Hegy F.B., Kleibrink A. (2014), Regional Benchmarking in the Smart Specialisation Process: Identification of Reference Regions Based on Structural Similarity, "S3 Working Paper Series", No. 03/2014. http://s3platform.jrc.ec.europa.eu/-/regional-benchmarking-in-the-smart-specialisation-process -identification-of-reference-regions-based-on-structural-similarity (accessed: 05.10.2018).
  • 21. Plawgo B., Klimczak T., Czyż P., Boguszewski R.K.A. (2013), Regionalne Systemy Innowacji w Polsce. Raport z badań, http://poig.parp.gov.pl/index/more/31287 (accessed: 05.10.2018).
  • 22. Ploeg M., van der Veen G., Arnold E. (2015), Measuring Innovation Policy across Europe -Common Indicator Framework, "Report of TAFTIE Task Force on Benchmarking Impact, Effectiveness and Efficiency", https://www.taftie.org/sites/default/files/Common Indicator Framework for publication.pdf (accessed: 05.10.2018).
  • 23. Radauer A., Streicher J., Ohler F. (2009), Benchmarking National and Regional Support Services for SMEs in the Field of Intellectual and Industrial Property, [in:] Presentation at the Meeting of Expert Group for Defining the Scope and the Methodology for National Surveys/Studies on Intellectual Property and SMEs, Geneva -WIPO, September 17, 2009.
  • 24. Rahman H. (2010), Open Innovation in SMEs: From Closed Boundaries to Networked Paradigm, "Issues in Informing Science and Information Technology", Vol. 7, http://www.academia.edu/1548116/Open_ Innovation_in_SMEs_From_closed_boundaries_to_networked_paradigm (accessed: 05.10.2018).
  • 25. Research Proposal Effect of Israeli Government Support for Business R&D on Recipient Firms (n.d).
  • 26. Saublens C. (2013), Regional Policy for Smart Growth of Smes. Guide for Managing Authorities and Bodies in Charge of the Development and Implementation of Research and Innovation Strategies for Smart Specialisation, European Commission, Brussels, http://s3platform.jrc.ec. europa.eu/-/regional-policy-for-smart-growth-of-smes?inheritRedirect =true (accessed: 05.10.2018).
  • 27. Szczygielski K., Grabowski W., Pamukcu M.T., Tandogan V. S. (2017), Does Government Support for Private Innovation Matter? Firm-Level Evidence from Two Catching-Up Countries, "Research Policy", Vol. 46, No. 1. DOI: 10.1016/J.RESPOL.2016.10.009.
  • 28. The European Parliament and the Council of the European Union (2003), Directive 2003/98/EC of the European Parliament and of the Council on the Re-Use of Public Sector Information, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003L 0098 &from=en (accessed: 05.10.2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171550911
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.