Czasopismo
2005
|
nr 1088, t. 2 Inwestycje finansowe i ubezpieczenia - tendencje światowe a polski rynek. T. 2
|
48-55
Tytuł artykułu
Warianty tytułu
Selected Premiums in the Collective Risk Model
Języki publikacji
Abstrakty
Do najważniejszych zadań matematyki aktuarialnej należy kalkulacja składki dla danego portfela ubezpieczeń. Wyznaczenie składki przeznaczonej na pokrycie wypłat polega na przypisaniu zmiennej losowej opisującej wypłatę pewnej liczby - ceny. Spośród wielu zasad określających różne sposoby kalkulacji tej ceny wybrano pięć najczęściej stosowanych i omówiono je w przypadku opisania całkowitej wypłaty w portfelu modelem ryzyka kolektywnego.
W pierwszej części pracy przedstawiono podstawowe informacje dotyczące modelu ryzyka kolektywnego. Następnie omówione zostały wybrane rodzaje składek dotyczących rozważanego modelu: składki oparte na wartości oczekiwanej oraz składkę wykładniczą. W związku z tym, że w praktyce dla modelu ryzyka kolektywnego często stosuje się aproksymację rozkładem normalnym lub przesuniętym rozkładem gamma, oba te oszacowania zaprezentowano w trzecim punkcie pracy. W szczególności pokazano, jak te przybliżenia wpływają na wysokość rozważanych składek. Aby zilustrować rozważania teoretyczne, w ostatniej części pracy przeanalizowano składki otrzymane dla modelu ryzyka kolektywnego dopasowanego do rzeczywistych danych szkodowych, opisujących wysokości strat związanych z katastrofami naturalnymi w USA w latach 1990-1999. (fragment tekstu)
W pierwszej części pracy przedstawiono podstawowe informacje dotyczące modelu ryzyka kolektywnego. Następnie omówione zostały wybrane rodzaje składek dotyczących rozważanego modelu: składki oparte na wartości oczekiwanej oraz składkę wykładniczą. W związku z tym, że w praktyce dla modelu ryzyka kolektywnego często stosuje się aproksymację rozkładem normalnym lub przesuniętym rozkładem gamma, oba te oszacowania zaprezentowano w trzecim punkcie pracy. W szczególności pokazano, jak te przybliżenia wpływają na wysokość rozważanych składek. Aby zilustrować rozważania teoretyczne, w ostatniej części pracy przeanalizowano składki otrzymane dla modelu ryzyka kolektywnego dopasowanego do rzeczywistych danych szkodowych, opisujących wysokości strat związanych z katastrofami naturalnymi w USA w latach 1990-1999. (fragment tekstu)
In this paper we present the most important premium calculation principles for the collective risk model, namely equivalence, expected value, variance, standard deviation and exponential principles. Moreover, we study premiums for normal and translated gamma approximations. We illustrate theoretical results on a real-world natural catastrophe loss data. (original abstract)
Słowa kluczowe
Rocznik
Strony
48-55
Opis fizyczny
Twórcy
autor
- Politechnika Wrocławska
autor
- Politechnika Wrocławska
Bibliografia
- Bowers N.L. jr., Gerber H.U., Hickman J.C., Jones D.A., Nesbitt C.J., Actuarial Mathematics, 2nd edition, The Society of Actuaries, Schaumburg 1997.
- Bumecki K., Misiorek A., Weron R., Loss Distributions, [w:] P. Čižek, W. Härdle, Weron R. (red.), Statistical Tools for Finance and Insurance, Springer, Berlin 2005, s. 297-326.
- Daykin C.D., Pentikäinen T., Pesonen M., Practical Risk Theory for Actuaries, Chapman & Hall, London 1994.
- Iwanik J., Nowicka-Zagrajek J., Premiums in the Individual and Collective Risk Models, [w:] P. Čižek, W. Härdle, R. Weron (red.), Statistical Tools for Finance and Insurance, Springer, Berlin 2005, s. 415-435.
- Klugman S.A., Panjer H.H., Willmot G.E., Loss Models: From Data to Decisions, Wiley, New York 1998.
- Ostasiewicz W. (red), Modele aktuarialne, AE, Wrocław 2000.
- Otto W., Ubezpieczenia majątkowe. Cz. I. Teoria ryzyka, WNT, Warszawa 2002.
- Panjer H.H., Willmot G.E., Insurance Risk Models, Society of Actuaries, Schaumburg 1992.
- Ronka-Chmielowiec W. (red), Zarządzanie ryzykiem w ubezpieczeniach, AE, Wrocław 2000.
- Straub E., Non-life Insurance Mathematics, Springer, Berlin 1988.
- Young V.R., Premium Calculation Principles, [w:] J.L. Teugels, B. Sundt (red.), Encyclopedia of Actuarial Science, Wiley, Chichester 2004.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171546387