Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of this paper is to propose the probabilistic description of cyclical (business) fluctuations. We generalize a fixed deterministic cycle model by incorporating the time-varying amplitude. More specifically, we assume that the mean function of cyclical fluctuations depends on unknown frequencies (related to the lengths of the cyclical fluctuations) in a similar way to the almost periodic mean function in a fixed deterministic cycle, while the assumption concerning constant amplitude is relaxed. We assume that the amplitude associated with a given frequency is time-varying and is a spline function. Finally, using a Bayesian approach and under standard prior assumptions, we obtain the explicit marginal posterior distribution for the vector of frequency parameters. In our empirical analysis, we consider the monthly industrial production in most European countries. Based on the highest marginal data density value, we choose the best model to describe the considered growth cycle. In most cases, data support the model with a time-varying amplitude. In addition, the expectation of the posterior distribution of the deterministic cycle for the considered growth cycles has similar dynamics to cycles extracted by standard bandpass filtration methods. (original abstract)
Rocznik
Tom
Numer
Strony
233-262
Opis fizyczny
Twórcy
autor
- Cracow University of Economics, Poland
Bibliografia
- [1] Azevedo J.V., Koopman S.J., Rua A. (2006) Tracking the business cycle of the euro area: a multivariate model-based band-pass filter. Journal of Business & Economic Statistics 24(3), 278-290
- [2] Christiano L.J., Fitzgerald T.J. (1999) The band pass filter. NBER Working Paper Series No. 7257, httpf/www.nber.orglpapers/w7257
- [3] Dimatteo I., Genovese CH.R., Kass R.E. (2001) Bayesian curve-fitting with free-knot splines. Biometrika 88(4), 1055-1071
- [4] Harvey A.C. (2004) State space and unobserved component models, chapter Tests for cycles, p. 102-119. Cambridge University Press
- [5] Harvey A.C., Jaeger A. (1993) Detrending, stylized facts and the business cycle. Journal of Applied Econometrics 8, 231-247
- [6] Harvey A.C., Trimbur T.M. (2003) General model-based filters for extracting cycles and trends in economic time series. Review of Economics and Statistics 85(2), 244-255
- [7] Harvey A.C., Trimbur T.M., Van Dijk H.K. (2007) Trends and cycles in economic time series: A bayesian approach. Journal of Econometrics 140, 618- 649
- [8] Koopman S.J., Azevedo J.V. (2008) Measuring synchronization and convergence of business cycles for the euro area, UK and US. Oxford Bulletin of Economics and Statistics 70(1), 23-51
- [9] Koopman S.J., Shephard N.(2015) Unobserved Components and Time Series Economeetrics. Oxford university Press, Oxford
- [10] Lenart Ł. (2018) Bayesian inference for deterministic cycle with time-varying amplitude. [in:] Papież M. and Śmiech S. (eds.), The 12-th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena. Conference Proceedings, p. 239-247
- [11] Lenart Ł., Mazur B. (2016) On Bayesian estimation of almost periodic in mean autoregressive models. Przegla¸d Statystyczny (Statistical Review) 63(3), 255-271
- [12] Lenart Ł., Mazur B. (2017) Business cycle analysis with short time series: a stochastic versus a non-stochastic approach. [in:] Papież M. and Śmiech S.(eds.), The 11-th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena.ConferenceProceedings,p.212- 221
- [13] Lenart Ł., Pipień M. (2013) Almost Periodically Correlated Time Series in Business Fluctuations Analysis. Acta Physica Polonica A 123(3), 567-583
- [14] Lenart Ł., Pipień M. (2017) Non-Parametric Test for the Existence of the Common Deterministic Cycle: The Case of the Selected European Countries. Central European Journal of Economic Modelling and Econometrics 9(3), 201- 241
- [15] Lenart Ł., Wróblewska J. (2018) Nonlinear stochastic cycle model. [in:] Papież M. and Śmiech S. (eds.), The 12-th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena. Conference Proceedings, p. 248-255
- [16] Lenart Ł., Mazur B., Pipień M. (2016) Statistical analysis of business cycle fluctuations in poland before and after the crisis. Equilibrium. Quarterly Journal of Economics and Economic Policy 11(4), 769-783
- [17] Lindstrom M.J. (2002) Bayesian estimation of free-knot splines using reversible jumps. Computational Statistics & Data Analysis 41, 255-269
- [18] Loizou P.C. (2013) Speech Enhancement: Theory and Practice, Second Edition. CRC Press, Boca Raton.
- [19] Mazur B. (2016) Growth cycle analysis: the case of polish monthly macroeconomic indicators. Folia Oeconomica Cracoviensia 57, 37-54
- [20] Mazur B. (2017) Probabilistic predictive analysis of business cycle fluctuations in polish economy. Equilibrium. Quarterly Journal of Economics and Economic Policy 12(3), 435-452
- [21] Mazur B. (2017) Probabilistic prediction using disaggregate data: the case of gross value added in poland. Folia Oeconomica Cracoviensia 58, 85-103
- [22] Mazur B. (2018) Cyclical fluctuations of global food prices: a predictive analys. [in:] Papież M. and Śmiech S. (eds.), The 12-th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio-Economic Phenomena. Conference Proceedings, p. 286-295
- [23] Napolitano A. (2012) Generalizations of Cyclostationary Signal Processing: Spectral Analysis and Applications. Wiley-IEEE Press
- [24] Osiewalski J. (1988) Posterior and predictive densities for nonlinear regression. A partly linear model case. Department of Economic Research Memorandum 535, Tilburg University
- [25] Pelagatti M.M. (2016) Time Series Modelling with Unobserved Components. Taylor & Francis Group, Boca Raton
- [26] Trimbur T.M. (2006) Properties of higher order stochastic cycles. Journal of Time Series Analysis 27, 1-17
- [27] Wang X. (2008) Bayesian free-knot monotone cubic spline regression. Journal of Computational and Graphical Statistics 17(2), 373-387
- [28] Zellner A. (1971) An Introduction to Bayesian Inference in Econometrics. Wiley & Sons, New York
- ---
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171532178