Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Logit Model with Latent Class Analysis
Języki publikacji
Abstrakty
W niniejszej pracy przedstawiono model logitowy, którego podstawą jest idea wielomianowego modelu logitowego. Takie ujęcie zagadnienia pozwoliło zwrócić uwagę na strategię decyzyjną konsumenta i jednocześnie porównać przedstawiony model z zaproponowanym przez A.K. Formana. Pokazano również, że w zależności od przyjętych założeń model opiera się na mieszankach rozkładów lub analizie klas ukrytych. (fragment tekstu)
Using a single logit model for an entire population is potentially dangerous in masking the differential effects due to consumer heterogeneity. Therefore, as a remedy a logit model are combined with a widely known statistical method as latent class analysis. Also, a more generic model based on finite mixture distribution is discussed. In particular author focusing on consumer decision strategy shows that logistic latent class analysis are a special case. The maximum likelihood function is optimized by means of an EM algorithm and Newton-Raphson in the M-step. The practical applicability of logit latent class analysis is demonstrated by real data. (original abstract)
Słowa kluczowe
Rocznik
Tom
Strony
326-335
Opis fizyczny
Twórcy
autor
- Politechnika Wrocławska
Bibliografia
- Bozdogan H. (1987), Model Selection and Akaike 's Information Criterion: The General Theory and its Analytical Extensions. "Psychometrika", vol. 52, nr 3, s. 345-370.
- Dayton C.M. (1998), Latent Class Scaling Analysis, Sage University Papers Series on Quantitative Applications in the Social Sciences, Sage Thousand Oaks, CA.
- Dempster A.P., Laird N.M., Rubin D.B. (1977), Maximum Likelihood from Incomplete Data via the EM Algorithm, "Journal of the Royal Statistical Society", ser. B, nr 1(39), s. 1-22.
- Dillon W., Kumar A. (1994), Advanced Methods of Marketing Research, [w:] R.P. Bagozzi (red.), Latent Structure and other Mixture Models in Marketing: An Integrative Survey and Overview, Blackwell, Oxford, s. 295-351.
- Everitt B.S. (1984), An Introduction to Latent Variable Models, Chapman and Hall.
- Everitt B.S. (1987), Introduction to Optimization Methods and their Application in Statistics, Chapman and Hall.
- Formann A.K. (1992), Linear Logistic Latent Class Analysis for Polytomous Data. "Journal of the American Statistical Association", vol. 87, s. 476-486.
- Kamakura W.A., Russell G.J. (1989), A Probabilistic Choice Model for Market Segmentation and Elasticity Structure, "Journal of Marketing Research", vol. 26, s. 379-390.
- Kapłon R. (2002), Analiza danych dyskretnych za pomocą metody LCA, "Prace Naukowe AE we Wrocławiu" nr 942, Taksonomia 9, AE, Wrocław.
- Kass R.E., Raftery A.E. (1995), Bayes Factors, "Journal of the American Statistical Association", vol. 90, s. 773-793.
- McFadden D. (1974), Conditional Logit Analysis of Qualitative Choice Behavior, [w:] P. Zarembka (red.), Frontiers in Econometrics, Academic Press, New York, s. 105-142.
- McLachlan G.J., Krishnan T. (1997), The EM Algorithm and Extensions, John Wiley, New York.
- Titterington D.M., Smith A.F.M., Markov U.E. (1985), Statistical Analysis of Finite Mixture Distributions, John Wiley & Sons.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171527645