Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The research described in this article was conducted in the Tatra National Park in Poland, which is considered as one of the most-visited national parks in Europe. The exceptional popularity of this place is responsible for intensification of morphogenetic processes, resulting in the development of numerous forms of erosion. This article presents the outcomes of the research whose purpose was to verify the usability of unmanned aerial vehicles to check the condition of hiking trails and forests in alpine areas. An octocopter equipped with a non-metric camera was used for measurements. The paper sketches the methodology of data acquisition in harsh conditions and demanding locations of hiking trails on steep Tatra slopes. The paper also describes stages that lead to elaboration of basic photogrammetric products relying on SfM (Structure from Motion) technique. Finally, it shows the applicability of the prepared products to the evaluation of erosion along hiking trails, and to the study of plant succession or tree stand condition in the area located next to hiking trails.(original abstract)
Czasopismo
Rocznik
Numer
Strony
1545-1561
Opis fizyczny
Twórcy
autor
- AGH University of Science and Technology Kraków, Poland
autor
- AGH University of Science and Technology Kraków, Poland
autor
- AGH University of Science and Technology Kraków, Poland
autor
- AGH University of Science and Technology Kraków, Poland
autor
- AGH University of Science and Technology Kraków, Poland
autor
- AGH University of Science and Technology Kraków, Poland
autor
- AGH University of Science and Technology Kraków, Poland
Bibliografia
- Barry, P.; Coakley, R. (2013). Accuracy of UAV photogrammetry compared with network RTK GPS. Int. Arch. Photogramm. Remote Sens., XL-1/W2: 27-31.
- Benassi, F.; Dall'Asta, E.; Diotri, F.; Forlani, G.; Morra di Cella, U.; Roncella, R.; Santise, M. (2017). Testing Accuracy and Repeatability of UAV Blocks Oriented with GNSS-Supported Aerial Triangulation. Remote Sensing, 9: 172, doi:10.3390/rs9020172.
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. (2009). Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47: 722-738, doi: 10.1109/TGRS.2008.2010457.
- Będkowski, K. (2005). Fotogrametryczna metoda oceny stanu i zmian wysokościowej struktury warstwy koron w drzewostanach, 1st ed.; Warsaw: Wydawnictwo SGGW, 1-208.
- Chiara Torresan, Andrea Berton, Federico Carotenuto, Salvatore Filippo Di Gennaro, Beniamino Gioli, Alessandro Matese, Franco Miglietta, Carolina Vagnoli, Alessandro Zaldei & Luke Wallace (2017). Forestry applications of UAVs in Europe: a review. International Journal of Remote Sensing, 38: 8-10.
- Colomina, I.; Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sensing, 92: 79-97, doi: 10.1016/j.isprsjprs.2014.02.013.
- d'Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. (2012). Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sensing, 4: 3390-3416, doi: 10.3390/rs4113390.
- Eltner, A.; Mulsow, C.; Maas, H.-G. (2013). Quantitative measurement of soil erosion from TLS and UAV data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W2: 119-124.
- Hackney, C.; Clayton, A. (2015). Unmanned Aerial Vehicles (UAVs) and their application in geomorphic mapping. Geomorphological techniques; Clarke, L.E., Nield, J.M., Eds.; London: British Society for Geomorphology, 1-12.
- Hildebrandt, G. (1987). 100 Jahre forstliche Luftbildaufnahme - zwei Dokumenta aus den Anfängen der forstlichen Luftbildinterpretation. Bildmessung und Luftbildwesen, 55: 221-224.
- Hlotov V., Siejka Z., Kolesnichenko V., Prokhorchuk O., Tserklevych A., Babiy L. (2015). The analysis of the results of aerial photography experiments on the basis of a developed UAV model. Infrastruktura i Ekologia Terenów Wiejskich, IV:1329-1350.
- Spellmann, H. (1984). Zustandserfassung in Kiefernbeständen mit Hilfe des Luftbildes. Dissertation, Georg-August-Universität Göttingen, Göttingen.
- Tatra National Park, Poland. Available online: http://tpn.pl.
- Wallace, L.; Lucieer, A.; Watson, Ch.; Turner, D. (2012). Development of a UAVLiDAR System with Application to Forest Inventory. Remote Sensing, 4(6): 1519-1543, doi:10.3390/rs4061519.
- Wallace L. (2013). Assesing the Stability of Canopy Maps Produced from UAV-LIDAR Data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2013, 3879-3882, doi: 10.1109/IGARSS.2013.6723679.
- Wencel, A.; Wężyk, P.; Zasada, M. (2008). Możliwości zastosowania naziemnego skaningu laserowego w leśnictwie. Techniki geomatyczne w inwentaryzacji lasu - potrzeby i możliwości; Zawiła-Niedźwiecki, T., Zasada, M., Eds.; Warsaw: Wydawnictwo SGGW, 77-89.
- Wodera, H. (1948). Die Holzmassenermittlung nach Luftbildern. Allgemeine Forst - und Holzwirtschaftliche Zeitung, 59: 109-112. 1545-1561 http://dx.medra.org/10.14597/infraeco.2017.4.2.117 http://www.infraeco.pl/pl/art/a_18441.htm?plik=2168
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171495982