Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Czy można polegać na prognozach cen lub stóp zwrotu? Podejście krótkookresowe
Języki publikacji
Abstrakty
Inwestorzy podejmują decyzje na podstawie informacji pochodzących z rynku. Głównymi cechami aktywów, branymi przez nich pod uwagę, są ceny i ryzyko inwestycji. W oparciu o ceny obliczane są stopy zwrotu. Przyszłe ruchy cen można przewidywać z pomocą narzędzi analizy technicznej. Do modelowania stóp zwrotu wykorzystuje się głównie modele wyceny aktywów kapitałowych. Celem niniejszej pracy jest ocena zastosowania obu podejść: modelowania ekonometrycznego stóp zwrotu aktywów i analizy cen aktywów oraz sprawdzenie skuteczności obu podejść do prognozowania. Analiza empiryczna obejmuje dzienne notowania akcji dziesięciu spółek sektora spożywczego, notownych na Giełdzie Papierów Wartościowych w Warszawie. Dokonano porównania tradycyjnego podejścia do wyceny aktywów za pomocą modelu CAPM z modelem uwzględniającym zmienność wariancji GARCH(1,1). Narzędziem analizy technicznej do modelowania cen jest trzyokresowa średnia ruchoma. Wyniki wskazują na przewagę modelowania stóp zwrotu w kontekście prognozowania nad narzędziem analizy technicznej. Nie pozwalają jednak na wskazanie przewagi uwzględnienia zmienności wariancji w przypadku prognozowania krótkookresowego(abstrakt oryginalny)
Investors make their decisions on the basis of the information coming from the market. The main features of assets are prices and investment risk. The rates of return are calculated based on the prices. For modelling the returns, capital asset pricing models can be applied; for the prices, methods of technical analysis could be taken into account. The purpose of this paper is to evaluate both approaches. First - financial modelling of the assets' returns, and the second - the analysis of the assets' prices. In order to verify the effectiveness of the forecasting processes, forecasts and ex-post type forecasting errors were calculated. The empirical analysis is based on the stock prices of ten food companies traded on the Warsaw Stock Exchange. The traditional CAPM and the extension of the CAPM by the GARCH(1,1) process are in use. As the technical analysis tool for price modelling, three period moving averages are calculated. The obtained results allow indicating the superiority of modelling the returns, in terms of short-term forecasting. Unfortunately, the hypothesis about the advantage of the application of GARCH for modelling, and then for forecasting, must be rejected(original abstract)
Rocznik
Strony
187-200
Opis fizyczny
Twórcy
autor
- University of Gdansk, Poland
Bibliografia
- Bali T.G., Cakici N., Tang Y., 2009, The Conditional Beta and the Cross-Section of Expected Returns, Financial Management, no. 38, p. 103-137.
- Bauwens L., Laurent S., Rombouts J.V.K., 2006, Multivariate GARCH Models: a survey, Journal of Applied Econometrics, no. 21, p. 79-109.
- Bodurtha J.N., Mark N.C., 1991, Testing the CAPM with Time-Varying Risk and Return, Journal of Finance, no. 46, p. 1485-1505.
- Bollerslev T., 1986, Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, no. 31, p. 307-327.
- Bollerslev T., Engle R.F., Wooldridge J.M., 1988, A Capital Asset Pricing Model with Time-Varying Covariances, Journal of Political Economy, no. 96, p. 116-131.
- Borowski K., 2006, Fractal Adaptive Moving Average and its Application in Technical Analysis, Studia i Prace Kolegium Zarządzania i Finansów, no. 69, p. 49-57.
- Brzeszczyński J., Kelm R., 2000, Econometric models of financial markets: stock exchange indices and exchange rate models, WIG-Press, Warsaw.
- Davis J.L., Fama E.F., French K.R., 2000, Characteristics, Covariances and Average Returns: 1929-1997, The Journal of Finance, no. 55, p. 389-406.
- De Santis G., Gerard B., 1997, International Asset Pricing and Portfolio Diversification with Time-Varying Risk, The Journal of Finance, no. 52, p. 1881-1912.
- Doman M., 2004, Forecasting Polish stock indices volatility using GARCH model and high frequency data, Folia Oeconomica, no. 177, p. 291-309.
- Doman M., Doman R., 2004, Econometric Modeling Dynamics of the Polish Financial Market, The Publishers of the Poznań Economic University, Poznań.
- Dormeier B., 2001, Buff Up Your Moving Average, Technical Analysis of Stock & Commodities, no. 19, p. 48-56.
- Elton E.J., Gruber M.J., Brown S.J., Goetzmann W.N., 2014, Modern Portfolio Theory and Investment Analysis, Wiley, New York.
- Engel C., Rodrigues A.P., 1989, Tests of International CAPM with Time-varying Covariances, Journal of Applied Econometrics, no. 4, p. 119-138.
- Fama E.F., French K.R., 1997, Industry costs of equity, Journal Financial Economics, no. 43, p. 153-193.
- Fama E.F., French K.R., 2004, The Capital Asset Pricing Model: Theory and Evidence, The Journal of Economic Perspective, no. 18, p. 25-46.
- Fiszeder P., 2009, Modele klasy GARCH w empirycznych badaniach finansowych, Wydawnictwo Naukowe Uniwerystetu Mikołaja Kopernika, Toruń.
- Hafner C.M., Herwartz H., 2000, Testing for linear autoregressive dynamics under heteroskedasticity, Econometrics Journal, no. 3, p. 177-197.
- Haugen R.A., 2000, Modern investment theory, Pearson, New York.
- Hutson J.K., 1984, Filter Price Data: Moving Averages Versus Exponential Moving Averages, Technical Analysis of Stock & Commodities, no. 2, p. 102-103.
- Jansen W.J., 1995, Why Do We Reject the Mean-Variance Model?, Scandinavian Journal of Economics, no. 97, p. 137-144.
- Lambert D.R., 1984, Exponentially Smoothed Moving Averages, Technical Analysis of Stock and Commodities, no. 2, p. 182-183.
- Li J., Tsang E.P.K., 1999, Improving Technical Analysis Predictions: An Application of Genetic Programming, Proceedings on the Twelfth International FLAIRS Conference, http://www.aaai.org/Papers/FLAIRS/1999/FLAIRS99-019 (02.10.2016).
- Lintner J., 1965, Security Prices, Risk and Maximal Gains from Diversification, Journal of Finance, no. 20, p. 587-615.
- Majerowska E., 2015, Decision making process: technical analysis versus financial modelling, Research Papers of Wroclaw University of Economics, no. 381, p. 199-210.
- Mossin J., 1966, Equilibrium in a Capital Asset Market, Econometrica, no. 34, p. 768-783.
- Murphy J.J., 1999, Technical analysis of the financial markets, New York Institute of Finance, New York.
- Ng L., 1991, Tests of the CAPM with Time-Varying Covariances: A Multivariate GARCH Approach, Journal of Finance, no. 46, p. 1507-1521.
- Pring M.J., 2002, Technical analysis explained, McGraw-Hill, New York.
- Schulmeister S., 2009, Aggregate trading behaviour of technical models and the yen/dollar exchange rate 1976-2007, Japan and the World Economy, no. 21, p. 270-279.
- Schwert G.W., Seguin P.J., 1990, Heteroskedasticity in Stock Returns, Journal of Finance, no. 45, p. 1129-1155.
- Sharpe W.F., 1964, Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, Journal of Finance, no. 19, p. 425-442.
- Stooq.pl, 2016, Notowania, www.stooq.pl (02.10.2016).
- Taylor S.J., 1986, Modelling Financial Time Series, Wiley, Chichester.
- Tse Y.K., 2002, Residual-Based Diagnostics for Conditional Heteroscedasticity Models, The Econometrics Journal, no. 5, p. 358-373.
- Turtle H., Buse A., Korkie B., 1994, Tests of Conditional ASSET Pricing with Time-Varying Moments and Risk Prices, Journal of Financial and Quantitative Analysis, no. 29, p. 15-29.
- White A., 1996, The Derivative Moving Average, Technical Analysis of Stock & Commodities, no. 14, p. 253-257.
- Zielonka P., 2004, Technical analysis as the representation of typical cognitive biases, International Review of Financial Analysis, no.13, p. 217-225.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171489101