Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 27 | nr 2 | 45-58
Tytuł artykułu

Determining an Estimate of an Equivalence Relation for Moderate and Large Sized Sets

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents two approaches to determining estimates of an equivalence relation on the basis of pairwise comparisons with random errors. Obtaining such an estimate requires the solution of a discrete programming problem which minimizes the sum of the differences between the form of the relation and the comparisons. The problem is NP hard and can be solved with the use of exact algorithms for sets of moderate size, i.e. about 50 elements. In the case of larger sets, i.e. at least 200 comparisons for each element, it is necessary to apply heuristic algorithms. The paper presents results (a statistical preprocessing), which enable us to determine the optimal or a near-optimal solution with acceptable computational cost. They include: the development of a statistical procedure producing comparisons with low probabilities of errors and a heuristic algorithm based on such comparisons. The proposed approach guarantees the applicability of such estimators for any size of set. (original abstract)
Rocznik
Tom
27
Numer
Strony
45-58
Opis fizyczny
Twórcy
  • Polish Academy of Sciences
Bibliografia
  • [1] CHOPRA R., RAO M.R., The partition problem, Math. Progr., 1993, 59, 87-115.
  • [2] DAVID H.A., The Method of Paired Comparisons, 2nd Ed., Griffin, London 1988.
  • [3] GORDON A.D., Classification, 2nd Ed., Chapman and Hall CRC, 1999.
  • [4] HANSEN P., JAUMARD B., Cluster analysis and mathematical programming, Math. Progr., 1997, 79, 191-215.
  • [5] HANSEN P., JAUMARD B., SANLAVILLE E., Partitioning Problems in Cluster Analysis. A Review of Mathematical Programming Approaches. Studies in Classification, Data Analysis and Knowledge Organization, Springer-Verlag, 1994.
  • [6] HOEFFDING W., Probability inequalities for sums of bounded random variables, J. Am. Stat. As., 1963, 58, 13-30.
  • [7] KLUKOWSKI L., Some probabilistic properties of the nearest adjoining order method and its extensions, Ann. Oper. Res., 1994, 51, 241-261.
  • [8] KLUKOWSKI L., The nearest adjoining order method for pairwise comparisons in the form of difference of ranks, Ann. Oper. Res., 2000, 97, 357-378.
  • [9] KLUKOWSKI L., Methods of estimation of relations of: equivalence, tolerance, and preference in a finite set, IBS PAN, Ser. Systems Research, Vol. 69, Warsaw 2011.
  • [10] KLUKOWSKI L., Estimators of the relations of equivalence, tolerance and preference based on pairwise comparisons with random errors, Oper. Res. Dec., 2012, 22, 15-34.
  • [11] RAO M.R., Cluster analysis and mathematical programming, J. Am. Stat. As., 1971, 66, 622-626.
  • [12] SLATER P., Inconsistencies in a schedule of paired comparisons, Biometrika, 1961, 48, 303-312.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171480519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.