Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 8 | nr 4 | 241-271
Tytuł artykułu

Hybrid MSV-MGARCH Models - General Remarks and the GMSF-SBEKK Specification

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The first so-called hybrid MSV-MGARCH models were characterized by the conditional covariance matrix that was a product of a univariate latent process and a matrix with a simple MGARCH structure (Engle's DCC or scalar BEKK). The aim was to parsimoniously describe volatility of a large group of assets. The proposed hybrid models, similarly as pure MSV specifications(and other models based on latent processes), required the Bayesian approach equipped with efficient MCMC simulation tools. The numerical effort has payed - the hybrid models seem particularly useful due to their good fit and ability to jointly cope with large portfolios. In particular, the simplest hybrid, now called the MSF-SBEKK model, has been successfully used in many applications. However, one latent process may be insufficient in the case of a highly heterogeneous portfolio. Thus, in this study we discuss a general hybrid MSV-MGARCH model structure, showing its basic characteristics that explain greater flexibility of such hybrid structure with respect to the corresponding MGARCH class. From the empirical perspective, we advocate the GMSF-SBEKK specification, which uses as many latent processes as there are relatively homogeneous groups of assets. We present full Bayesian inference for such models, with the use of an efficient MCMC simulation strategy. The approach is used to jointly model volatility on very different markets. Joint modelling is formally compared to individual modelling of volatility on each market. (original abstract)
Rocznik
Tom
8
Numer
Strony
241-271
Opis fizyczny
Twórcy
  • Cracow University of Economics, Poland
Bibliografia
  • [1] Almeida C. and Czado C. (2012), Efficient Bayesian inference for stochastic time-varying copula models, Computational Statistics and Data Analysis 56, 1511-1527.
  • [2] Bauwens L. , Laurent S. and Rombouts J. V. K. (2006), Multivariate GARCH models: A survey, Journal of Applied Econometrics 21, 79-109.
  • [3] Doman R. (2011), Zastosowania kopuli w modelowaniu dynamiki zależności na rynkach finansowych, Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.
  • [4] Engle R. F. (2002), Dynamic Conditional Correlation - A simple class of multivariate GARCH models, Journal of Business and Economic Statistics 20, 339-350.
  • [5] Hafner C. M. and Manner H. (2012), Dynamic stochastic copula models: Estimation, inference and applications, Journal of Applied Econometrics 27, 269-295.
  • [6] Jondeau E. and Rockinger M. (2006), The Copula-GARCH model of conditional dependencies: An international stock market application, Journal of International Money and Finance 25, 827-853.
  • [7] Koop G. , León-Gonzalez R. and Strachan R. (2009), Efficient posterior simulation for cointegrated models with priors on the cointegration space, Econometric Reviews 29, 224-242.
  • [8] Lenk P. (2009), Simulation pseudo-bias correction to the harmonic mean estimator of integrated likelihoods, Journal of Computational and Graphical Statistics 18, 941-960.
  • [9] Marimoutou V. , Raggad B. and Trabelsi A. (2009), Extreme Value Theory and Value at Risk: Application to oil market, Energy Economics 31, 519-530.
  • [10] Newton M. and Raftery A. (1994), Approximate Bayesian inference by Weighted Likelihood Bootstrap (with discussion), Journal of the Royal Statistical Society, series B 56, 3-48.
  • [11] Osiewalski J. (2009), New hybrid models of multivariate volatility (a Bayesian perspective), Przegląd Statystyczny 56, 15-22.
  • [12] Osiewalski J. and Osiewalski K. (2011), Modele hybrydowe MSV-MGARCH z trzema procesami ukrytymi w badaniu zmienności cen na różnych rynkach, Folia Oeconomica Cracoviensia 52, 71-85.
  • [13] Osiewalski J. and Osiewalski K. (2012a), Modele hybrydowe MSV-MGARCH z dwoma procesami ukrytymi, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, seria Finanse nr 895, 5-18.
  • [14] Osiewalski J. and Pajor A. (2007), Flexibility and parsimony in multivariate financial modelling: A hybrid bivariate DCC-SV model [in: ]Financial Markets: Principles of Modelling, Forecasting and Decision-Making, FindEcon MonographSeries No 3 [eds. ] Milo W. and Wdowiński P. , Łódź University Press.
  • [15] Osiewalski J. and Pajor A. (2009), Bayesian analysis for hybrid MSF-SBEKK models of multivariate volatility, Central European Journal of Economic Modelling and Econometrics 1, 179-202.
  • [16] Osiewalski J. and Pajor A. (2010), Bayesian Value-at-Risk for a portfolio: multi-and univariate approaches using MSF-SBEKK models, Central European Journal of Economic Modelling and Econometrics 2, 253-277.
  • [17] Osiewalski K. (2015), Hybrydowe modele MSV-MGARCH w łącznej analizie zmienności cen na wybranych rynkach, unpublished doctoral dissertation, Warsaw School of Economics.
  • [18] Osiewalski K. and Osiewalski J. (2012b), Missing observations in daily returns - Bayesian inference within the MSF-SBEKK model, Central European Journal of Economic Modelling and Econometrics 4, 169-197.
  • [19] Osiewalski K. and Osiewalski J. (2013), A long-run relationship between daily prices on two markets: the Bayesian VAR(2)-MSF-SBEKK model, Central European Journal of Economic Modelling and Econometrics 5, 65-83.
  • [20] Pajor A. (2003), Procesy zmienności stochastycznej w bayesowskiej analizie finansowych szeregów czasowych, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.
  • [21] Pajor A. (2010), Wielowymiarowe procesy wariancji stochastycznej w ekonometrii finansowej. Ujęcie bayesowskie, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków.
  • [22] Pajor A. (2016), Estimating the marginal likelihood using the arithmetic mean identity, Bayesian Analysis(forthcoming), doi: 10. 1214/16-BA1001, http: //projecteuclid. org/euclid. ba/1459772735
  • [23] Pajor A. and Osiewalski J. (2012), Bayesian Value-at-Risk and Expected Shortfall for a large portfolio (multi- and univariate approaches), Acta Physica Polonica A vol 121 issue 2B, 101-109.
  • [24] Pajor A. and Osiewalski J. (2013-14), A note on Lenk's correction of the harmonic mean estimator, Central European Journal of Economic Modelling and Econometrics 5 (2013), 271-275; correction: vol. 6 (2014), 69.
  • [25] Patton A. J. (2006), Modelling asymmetric exchange rate dependence, International Economic Review 47, 527-556.
  • [26] Patton A. J. (2012), A review of copula models for economic time series, Journal of Multivariate Analysis 100, 4-18.
  • [27] Strachan R. (2003), Valid Bayesian estimation of the cointegrating error correction model, Journal of Business and Economic Statistics 21, 185-195.
  • [28] Tsay R. (2005), Analysis of Financial Time Series, 2nd ed., Wiley.
  • [29] Vo M. (2011), Oil and stock market volatility: A multivariate stochastic volatility perspective, Energy Economics 33, 956-966.
  • [30] Wróblewska J. (2010), Modele i metody bayesowskiej analizy kointegracji, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie, Kraków.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171447984
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.