Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a new, relatively simple proof of Pontryagin's maximum principle for the canonical problem of optimal control, with equality and inequality constraints imposed on the trajectory endpoints. The proof combines together two ideas, which appeared separately in the earlier works: application of the Karush-John conditions for finite-dimensional problems, and using packages of needle variations. (original abstract)
Słowa kluczowe
Twórcy
autor
- AGH University of Science and Technology Kraków, Poland
Bibliografia
- Dubovitskii, A.Ya; Milyutin, A.A. (1965) Extremum problems with restrictions. USSR Comput. Math. and Math. Phys. 5(3), 1-80.
- Edwards, R.E. (1995) Functional Analysis: Theory and Applications. Dover Publ., New York.
- Mangasarian, L.; Fromovitz, S. (1967) The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints. J. Mathematical Analysis and Applications 17, 37-47.
- Milyutin, A.A.; Dmitruk, A.V.; Osmolovskii, N.P. (2004) Maximum Principle in Optimal Control. Moscow State University, Moscow (in Russian).
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. (1961) The Mathematical Theory of Optimal Processes. Nauka, Moscow (in Russian, first English language edition: John Wiley & Sons, Inc., New York, 1962).
- Yosida, K. (1965) Functional Analysis. Springer, Berlin.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171442944