Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 8 | nr 3 | 161-179
Tytuł artykułu

Bayesian SVLEDEJ Model for Detecting Jumps in Logarithmic Growth Rates of One Month Forward Gas Contract Prices

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to analyse the welfare consequences of the processes of liberalisation of trade between asymmetric states in terms of the various sizes and effectiveness of their economies and the type of international exchange. These characteristics ultimately define the distribution of benefits from the liberalisation of international trade. When it is inter-industry or vertical intra-industry and barriers in trade are smaller than the difference in the effectiveness of the economies, the trade liberalisation undoubtedly contributes to improved social welfare, regardless of the level of effectiveness and the size of the economy. In the situation, however, of horizontal intra-industry trade, changes in the welfares of asymmetric countries, caused by their progressing trade liberalisation, depend on the sizes and effectiveness of their economies. The welfare of society in either a very big and ineffective or in a small and very ineffective country could even decrease in such a situation. This is the case when the increase in consumers' surplus is not sufficient to compensate for the decreasing profits of firms. (original abstract)
Rocznik
Tom
8
Numer
Strony
161-179
Opis fizyczny
Twórcy
  • Cracow University of Economics, Poland
Bibliografia
  • [1] BP (2014), BP Statistical Review of World Energy June 2014, http://www.bp.com/statisticalreview.
  • [2] BP (2015), BP Statistical Review of World Energy June 2015, http://www.bp.com/statisticalreview.
  • [3] Brigo D., Mercurio F. (2001), Interest Rate Models Theory and Practice. Springer-Verlag, Berlin-Heidelberg-New York.
  • [4] Chib S., Nardari F., Shephard N. (2002), Markov Chain Monte Carlo Methods for Stochastic Volatility Models, Journal of Econometrics, (108), 281-316.
  • [5] Frühwirth-Schnatter S. (2006), Finite Mixtures and Markov Switching Models, Springer Series in Statistics. New York/Berlin/Heidelberg: Springer.
  • [6] Gamerman D., Lopes H. F. (2006), Markov Chain Monte Carlo. Stochastic Simulation for Bayesian Inference. Chapman & Hall/CRC.
  • [7] Jacquier E., Polson N., Rossi P. (1994), Bayesian Analysis of Stochastic Volatility Models, Journal of Business & Economic Statistics, 12(4), 371-389.
  • [8] Jacquier E., Polson N., Rossi P. (2004), Bayesian Analysis of Stochastic Volatility Models with Fat-tails and Correlated Errors, Journal of Econometrics, (122),185-212.
  • [9] Janczura J., Truck S., Weron R., Wolff R. (2013), Identifying Spikes and SeasonalComponents in Electricity Spot Price Data: A Guide to Robust Modeling, Energy Economics, (38), 96-110, DOI: 10.1016/j.eneco.2013.03.013.
  • [10] Johannes M., Polson N. (2010), MCMC Methods for Continuous- Time Financial Econometrics, [in:] Handbook of Financial Econometrics, [ed.] Ait-Sahalia Y. and Hansen L., vol. 2, 1-72. North Holland.
  • [11] Kostrzewski M. (2014), Bayesian Inference for the Jump-Diffusion Model with M Jumps, Communications in Statistics - Theory and Methods, 43, 3955-3985, DOI: 10.1080/03610926.2012.755202.
  • [12] Kostrzewski M. (2015), Bayesian DEJD Model and Detection of Asymmetry in Jump Sizes, Central European Journal of Economic Modelling and Econometrics, 7, 43-70.
  • [13] Kou S. (2002), A Jump-diffusion Model for Option Pricing, Management Science, 48, 1086-1101.
  • [14] Kou S., Wang H. (2004), Option Pricing Under a Double Exponential Jump Diffusion Model, Management Science, 50(9), 1178-1192.
  • [15] Kwiatkowski Ł. (2015), Bayesowskie modele SV z przełączeniami typu Markowa w analizie zmienności na rynkach finansowych. Uniwersytet Ekonomiczny w Krakowie, (in Polish), ISBN 978-83-7252-659-5.
  • [16] Li H., Wells M., Yu C. (2008), A Bayesian Analysis of Return Dynamics with Levy Jumps, The Review of Financial Studies, 21(5), 2345-2378.
  • [17] Merton R. C. (1976), Option Pricing when Underlying Stock Return Rates are Discontinuous, Journal of Financial Economics, 3, 125-144.
  • [18] Omori Y., Chib S., Shephard N., Nakajima J. (2007), Stochastic Volatility with Leverage: Fast and Efficient Likelihood Inference, Journal of Econometrics,(140), 425-449.
  • [19] Pajor A. (2003), Procesy zmienności stochastycznej SV w bayesowskiej analizie finansowych szeregów czasowych, Monografie: Prace Doktorskie. Akademia Ekonomiczna w Krakowie, (in Polish).
  • [20] Ramezani C. A., Zeng Y. (1998), Maximum Likelihood Estimation of Asymmetric Jump-Diffusion Models, Working paper http://cyrus.cob.calpoly.edu/JUMPMLE/Ramezani-Zeng-PBJD.pdf.
  • [21] Szerszen P. (2009), Bayesian Analysis of Stochastic Volatility Models with Levy Jumps: Application to Risk Analysis, Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Afairs Federal Reserve Board, Washington, D.C, (40), 1-52.
  • [22] Weron R. (2014), Electricity Price Forecasting: A Review of the State-of-the-art with a Look into the Future, International Journal of Forecasting, 30(4),1030-1081.
  • [23] Yu J. (2005), On Leverage in Stochastic Volatility Model, Journal of Econometrics, (127), 165-178.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171439692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.