Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 3 | nr 4 | 57-65
Tytuł artykułu

Short-term forecasting of the chloride content in the mineral waters of the Ustroń Health Resort using SARIMA and Holt-Winters models

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ustroń S.A. Health Resort (southern Poland) uses iodide-bromide mineral waters taken from Middle and Upper Devonian limestones and dolomites with a mineralisation range of 110-130 g/dm3 for curative purposes. Two boreholes - U-3 and U3-A drilled in the early 1970s were exploited. The aim of this paper is to estimate changes in mineral water quality of the Ustroń Health Resort by taking into consideration chloride content in the water from the U-3 borehole. The data has included the results of monthly analyses of chlorides from 2005 to 2015 during the tests carried out by the Mining Department of the Health Resort. The triple exponential smoothing (ETS) function and the Seasonal Autoregressive Integrated Moving Average (SARIMA) method of modelling time series were used for the calculations. The ability to properly forecast mineral water quality can result in a good status of the exploitation borehole and a limited number of failures in the exploitation system. Because of the good management of health resorts, it is possible to acquire more satisfied customers. The main goal of the article involves the real-time forecast accuracy, obtained results show that the proposed methods are effective for such situations. Presented methods made it possible to obtain a 24-month point and interval forecast. The results of these analyses indicate that the chloride content is forecast to be in the range of 72 to 83 g/l from 2015 to 2017. While comparing the two methods of analysis, a narrower range of forecast values and, therefore, greater accuracy were obtained for the ETS function. The good performance of the ETS model highlights its utility compared with complicated physically based numerical models.(original abstract)
Rocznik
Tom
3
Numer
Strony
57-65
Opis fizyczny
Twórcy
  • University of Silesia in Katowice, Sosnowiec, Poland
  • University of Silesia in Katowice, Sosnowiec, Poland
Bibliografia
  • Adamowski J., Chan H.F. 2011. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407: 28-40. [Web of Science]
  • Asteriou D., Hall S. 2011. ARIMA Models and the Box-Jenkins Methodology. Applied Econometrics: 265-286.
  • Balaguer E., Palomares A., Sorie E., Martin- Guerrero J.D. 2008. Predicting service request in support centers based on nonlinear dynamics, ARMA modeling and neural networks. Expert Syst. App. 34: 665-672. [CrossRef] [Web of Science]
  • Box G.E.P., Jenkins G.M. 1976. Series Analysis Forecasting and Control. 1st ed. Holden-Day, San Francisco.
  • Chowaniec J. 1993. Budowa geologiczna i warunki hydrogeologiczne okolic Ustronia z uwzględnieniem wyników otworu chłonnego Ustroń C-1. Ustroń Health Resort Archive, unpublished.
  • Dubois D., Prade H. 1990. Rough fuzzy sets and fuzzy rough sets. Int. J. General Systems, 17 (2-3): 191-209. [Web of Science] [CrossRef]
  • Ediger V., Akar S. 2007. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, 35: 1701-1708. [CrossRef]
  • Karamouz M., Araghinejad Sh. 2012. Advanced Hydrology. Amirkabir Univ. of Tech. Press.
  • Kondracki J. 2011. Geografia regionalna Polski. PWN, Warszawa.
  • Ljung G., Box G. 1978. On a Measure of Lack of Fit in Time Series Models. Biometrika, 66: 67-72.
  • Malina A. 1994. The Forecasting of Economic Phenomena on the Basis of the Methods of Exponential Smoothing of Time Series. Cracow Rev. Econ. Manage., 440: 15-29.
  • Menhaj M.B. 2012. Artificial Neural Network. Amirkabir Univ. of Tech. Press.
  • Mohammadi K., Eslami H.R., Dayyani Sh. 2005. Comparison of regression ARIMA and ANN models for reservoir inflow forecasting using snowmelt equivalent. J. Agric. Sci. Tech., 7: 17-30.
  • Piłatowska M. 2011. Porównanie kryteriów informacyjnych i predykcyjnych w wyborze modelu. J. Manage. Finance, 4: 499-512.
  • Piontek K. 2002. Modeling and forecasting financial instruments variability (PhD thesis). Wroc. Uniw. Econ., Wrocław.
  • Rajchel L., Śliwa T., Waligóra J. 2007. Uwagi o wodach leczniczych Ustronia. Współczesne problemy hydrogeologii, 13, Krynica-Kraków.
  • R Core Team 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/
  • Solecki T. 2007. Zastosowanie odwiertów chłonnych w ochronie środowiska na przykładzie uzdrowiska Ustroń. Wiertnictwo, nafta, gaz, 24: 465-473.
  • Szmukta-Zawadzka M., Zawadzki J. 2012. O metodzie prognozowania brakujących danych w szeregach czasowych o wysokiej częstotliwości z lukami. Metody ilościowe w ekonomii, 13: 212-223.
  • Tratar L.F. 2013. Improved Holt-Winters method: A case of overnight stays of tourists in Republic of Slovenia. Econ. bus. rev., 16: 5-17.
  • Valipour M., Banihabib M., Behbahani S. 2013. Comparison of the ARMA, ARIMA and the autoregressive artificial neural networks model in forecasting the monthly inflow of Dez dam reservoir. J. Hydrology, 476: 433-441. [Web of Science] [CrossRef]
  • Waligóra J. 2012. Projekt zagospodarowania złoża wody leczniczej "Ustroń" z utworów dewonu, w granicach obszaru górniczego "Ustroń". Ustroń Health Resort Archive, unpublished.
  • Waligóra J., Sołtysiak M. 2011. Zatłaczanie wód pozabiegowych w utwory serii węglanowej dewonu w uzdrowisku Ustroń. Biul. Państ. Inst. Geol., 445: 701-708.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171439580
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.