Warianty tytułu
Języki publikacji
Abstrakty
This study presents preliminary research results, with regard to the concentration of chosen trace elements (Mn, Cr, Tl, Ni, Cu, Zn, As, Cd, Ba, Pb) in waste, which was produced in the process of combustion of solid fuels (hard coal and flotation concentrate of bituminous coal) in individual household furnaces in Poland (in the Upper Silesian Industrial Region). 27 samples of ash, 4 samples of hard coal and 2 samples of flotation concentrate of bituminous coal were prepared for the research. Methods such as: ICP-MS, X-ray diffraction by means of the powder method and scanning electron microscopy were used during the research. In the ash samples obtained from the combustion of hard coal, the highest average concentrations were: Mn (1477.7 ppm), Ba (1336.4 ppm) and Zn (599.7 ppm). In the samples obtained from the combustion of flotation concentrate of bituminous coal, the highest average concentrations was stated for: Zn (762.4 ppm), Mn (668.5 ppm), Pb (552.1 ppm) and Ba (211.7 ppm). Crystalline components were determined by used the X-ray diffraction method and the samples of ash obtained from the combustion of hard coal contained: anhydrite, gypsum, hematite, magnetite, quartz, calcite, mullite, periclase, kaolinite, dolomite, pyrite, sphalerite, galena and feldspars (albite-anorthite). The samples of ash obtained from the combustion of flotation concentrate of bituminous coal contain: pyrite, quartz, potassium feldspar, muscovite and kaolinite. The scanning electron microscope analysis enabled the identification of the chemical composition of single ash grains and determined their morphology (aluminosilicate forms, substance PbS and ZnS, oxides of Ni, Cu and Mn, monazite, xenotime). (original abstract)
Czasopismo
Rocznik
Tom
Numer
Strony
30-38
Opis fizyczny
Twórcy
- University of Silesia in Katowice, Sosnowiec, Poland
Bibliografia
- Adhikari B., Dahal K.R., Khanal S.N. 2014. A review of factor affecting the composition of municipal solid waste landfill leachate. Int. J. Eng. Sci. Innov. Tech., 3 (5): 272-281.
- Baic I., Witkowska - Kita B., Lutyński A., Suponik T. 2012. Parametry chemiczne depozytów mułów węglowych. Baza danych DMW. Polit. Energetyczna, 15, 3: 235-242.
- Burnley S.J. 2007. A review of municipale solid waste composition in the United Kingtom. Waste Manage., 27 (10): 1274-1285.
- Dai S.F., Ren D.Y., Chou C.L., Li S.S., Jiang Y.F. 2006. Mineralogy and geochemistry of the No. 6 Coal (Pensylvanian) in the Janger Coalfield, Ordos Basin, China. Int. J. Coal Geol., 66: 253-270. [CrossRef]
- Den Boer E., Jędrczak A., Kowalski Z., Kulczycka J., Szpadt R. 2010. A review of municipal solid waste composition and quantities in Poland. Waste Manage., 30: 369-377. [CrossRef] [Web of Science]
- Dziengielewska M. 2014. Charakterystyka mineralogiczna oraz skład chemiczny mułów węglowych. Praca magisterska. Uniw. Śląski: 61.
- Goodarzi F., Foscolos A.E., Cameron A.E. 1985. Mineral matter and elemental concentrations in selected western Canadian coals. Fuel, 64: 599-605.
- Grodzińska-Jurczak M. 2001. Management of industrial and municipal solid wastes in Poland. Resources, Conserv. Recycling, 32: 85-103. [CrossRef]
- GUS: Główny Urząd Statystyczny 2015. Zużycie paliw i nośników energii w 2014 r., Warszawa 2015 (http://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/zuzyciepaliw-i-nosnikow-energii-w-2014-r-,6,9.html).
- Hower J.C., Williams D.A., Eble C.F., Sakulpitakphon T., Moecher D.P. 2001. Brecciated and mineralized coals in Union Country, Western Kentucky coal field. Int. J. Coal Geol., 47: 223-234. [CrossRef]
- Kabata-Pendias A., Szteke B. 2012. Pierwiastki śladowe w geo- i biosferze. Wyd. IUNG-BIP, Puławy.
- Kutchko B.G., Kim A.G. 2006. Fly ash characterization by SEM-EDS. Fuel, 85: 2537-2544. [CrossRef]
- Li Z., Moore T.A., Weaver S.D., Finkelman R.B. 2001. Crocoite: an unusual mode of occurrence for lead in coal. Int. J. Coal Geol., 45: 289-293. [CrossRef]
- Lutyński A., Szpyrka J. 2003. analiza jakosci mułów węgla kamiennego zdeponowanych w osadnikach ziemnych. Górn. Geol., .6, 2: 121-123.
- Querol X., Fernández-Turiel J.L., Lopez-Soler A. 2009. Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 74(3): 331-343. [CrossRef]
- Raclavska H., Raclavsky K., Matysek D. 2009. Colour measurement as a proxy method for estimation of changes in phase and chemical composition of fly ash formed by combustion of coal. Fuel, 88: 2247-54. [Web of Science] [CrossRef]
- Swaine D.J. 1990. Trace Elements in Coal. Butterworths, London.
- Vassilev S.V., Vassileva C.G. 1998. Comparative chemical and mineral characterization of some Bulgarian coals. Fuel Proc. Tech., 55: 55-69. [CrossRef]
- Verma S.K., Masto R.E., Gautam S., Choudhury D.P., Ram L.C., Maiti S.K., Maity S.K. 2015. Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel, 162: 138-147.
- Ward C.R. 1977. Mineral matter in the Harrisburg-Springfield (No. 5) coal member of the Carbondale Formation, Illinois Basin. Illinois State Geol. Surv., Circular, 498, 35.
- Ward C.R. 2002. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol., 50: 135-168. [CrossRef]
- Wójcik M., Smołka-Danielowska D. 2008. Phase minerals composition of wastes formed In bituminous coal combustion from individual domestic furnace in the Piekary Śląskie town (Poland). Polish J. Environ. Stud., 17 (5): 817-821. https://rewolucjaenergetyczna.wordpress.com/2015/03/02/ogrzewanie-i-palenie-w-piecu-podstawy/
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171439450