Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 62 | z. 2 | 165-181
Tytuł artykułu

Metoda FSAW oparta na skierowanych liczbach rozmytych

Treść / Zawartość
Warianty tytułu
SAW Method Using Ordered Fuzzy Numbers
Języki publikacji
PL
Abstrakty
W artykule zaproponowano nowe podejście do rozmytych wieloatrybutowych metod wspomagania decyzji poprzez zastosowanie modelu skierowanych liczb rozmytych. Po prezentacji tego modelu, został on wykorzystany w rozmytej metodzie SAW. Skierowane liczby rozmyte pozwalają na błyskawiczne rozróżnienie typu kryterium, a przedstawione przykłady pokazują użyteczność proponowanej metody. (abstrakt oryginalny)
EN
In the paper, a new approach to fuzzy Multi-Attribute Decision Making methods has been proposed, with the application of Ordered Fuzzy Numbers model. After the presentation of OFN model, it has been used as part of the fuzzy SAW method. Ordered fuzzy numbers allow to immediately distinguish between type of criteria, and the presented examples show the usefulness of the proposed method. (original abstract)
Rocznik
Tom
62
Numer
Strony
165-181
Opis fizyczny
Twórcy
  • Politechnika Białostocka
Bibliografia
  • Abdullah L., Adawiyah C. W. R., (2014), Simple Additive Weighting Methods of Multicriteria Decision Making and Applications: A Decade Review, International Journal of Information Processing and Management, 5 (1), 39-49.
  • Bonissone P., (1982), A Fuzzy Sets Based Linguistic Approach: Theory and Applications, w: Gupta M. M., Sanchez E., (red.) Approximate Reasoning in Decision Analysis, North-Holland Publishing Company, 329-339.
  • Bonissone P., Decker K., (1986), Selecting Uncertainty Calculi and Granularity: An Experiment in Trading-off Precision and Complexity, in Uncertainty in Artificial Intelligence, L. Kanal, and J. Lemmer (red.), North-Holland Publishing Company, 217-247.
  • Chen C. T., (2000), Extension of the TOPSIS for Group Decision Making Under Fuzzy Environment, Fuzzy Sets and Systems, 114 (1), 1-9.
  • Chen S. J., Hwang C. L., (1992), Fuzzy Multiple Attribute Decision Making: Methods and Applications. Springer Verlag, Berlin.
  • Dubois D., Prade H., (1980), Fuzzy Sets and Systems: Theory and Application. Academic Press, New York.
  • Herrera F., Herrera-Viedma E., (2000), Linguistic Decision Analysis: Steps for Solving Decision Problems Under Linguistic Information, Fuzzy Sets and Systems, 115 (1), 67-82.
  • Hwang C. L., Yoon K., (1981), Multiple Attributes Decision Making Methods and Applications, Springer, Berlin.
  • Kacprzak D., (2008), Ewolucja liczb rozmytych. VII Konferencja naukowo-praktyczna: Energia w nauce i technice, Suwałki, 783-796.
  • Kacprzak D., (2010), Skierowane liczby rozmyte w modelowaniu ekonomicznych. Optimum - Studia Ekonomiczne, 3, 263-281.
  • Kosiński W., Prokopowicz P., Ślęzak D., (2002). Fuzzy Numbers with Algebraic Operations: Algorithmic Approach, w: Klopotek M., Wierzchoń S. T., Michalewicz M., (red.), Proc. IIS'2002, Sopot, Heidelberg: Physica Verlag, 311-320.
  • Kosiński W., Prokopowicz P., Ślęzak D., (2003), Ordered Fuzzy Numbers, Bulletin of the Polish Academy of Sciences Mathematic, 52 (3), 327-339.
  • Kosiński W., Prokopowicz P., (2004), Algebra liczb rozmytych, Matematyka Stosowana. Matematyka dla Społeczeństwa, 5 (46), 37-63.
  • Kosiński W., Wilczyńska-Sztyma D., (2010), Defuzzification and Implication within Ordered Fuzzy Numbers, w: WCCI 2010 IEEE World Congress on Computational Intelligence, Barcelona, 1073-1079.
  • Roszkowska E., Brzostowski J., (2014), Wybrane własności procedury SAW w kontekście wspomagania negocjacji, w: Trzaskalik T., (red.), Modelowanie Preferencji a Ryzyko‚14. Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, 108-126.
  • Rudnik K., Kacprzak D., (2015), Rozmyta metoda TOPSIS wykorzystująca skierowane liczby rozmyte. XVIII Konferencja Innowacje w zarządzaniu i inżynierii produkcji, Zakopane, 958-968.
  • Trzaskalik T., (2014a), Wielokryterialne wspomaganie decyzji. Przegląd metod i zastosowań, Zeszyty Naukowe Politechniki Śląskiej, Organizacja i Zarządzanie, 74, Wyd. Politechniki Śląskiej, Gliwice, 231-263.
  • Trzaskalik T., (2014b), Wielokryterialne wspomaganie decyzji, Polskie Wydawnictwo Ekonomiczne, Warszawa.
  • Zadeh L. A., (1965), Fuzzy Sets, Information and Control, 8, 338-353.
  • Zimmermann H. J., (2001), Fuzzy Set Theory and Applications, 4th Rev. ed. Boston: Kluwer Academic Publishers.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171396009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.