Czasopismo
2014
|
nr 34 Modelowanie danych panelowych : teoria i praktyka : III Ogólnopolska Konferencja
|
75-87
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In the paper the deterministic version of the procedure based on hidden Markov models for the analysis of economic cycles is described. The quality of fitting hidden Markov models as well as the accuracy of the identification of turning points in the business cycle in Poland depends, among other things, on the number of states of the model and the size of panel data. Determinism however affects significantly on a time of computations. Speed up of computations could be achieved by adding the parallelism into the procedure. The usefulness of this approach is verified by the numerical experiments and comparative tests measuring a time of computations depending on the number of processor cores.(original abstract)
Rocznik
Strony
75-87
Opis fizyczny
Twórcy
autor
- Szkoła Główna Handlowa w Warszawie
Bibliografia
- Baum L.E., Petrie T., Soules G., Weiss N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, "Ann. Math. Statist." 1970, vol. 41, no. 1, pp. 164-171.
- Bernardelli M., Kryteria optymalizacyjne w procedurze wykorzystującej ukryte modele Markowa do analiz danych ekonomicznych, in: Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne, ed. Z. Zieliński, vol. 2, Wydawnictwo Wyższej Szkoły Handlowej, Kielce 2013, pp. 43-53.
- Bernardelli M., Nieklasyczne modele Markowa - problemy numeryczne, praca badawczo-rozwojowa, SGH, 2012.
- Bernardelli M., Non-classical Markov models in the analysis of business cycles in Poland, "Roczniki" Kolegium Analiz Ekonomicznych, z. 30, Oficyna Wydawnicza SGH, Warszawa 2013, pp. 59-74.
- Bernardelli M., Dędys M., Ukryte modele Markowa w analizie wyników testu koniunktury gospodarczej, in: Badanie koniunktury - zwierciadło gospodarki, p. 1, "Prace i Materiały" IRG SGH, no. 90, Warszawa 2012, pp. 159-181.
- Cappé O., Moulines E., Rydén T., Inference in Hidden Markov Models, Springer, New York 2005.
- Cleveland R.B., Cleveland W.S., McRae J.E., Terpenning I., STL: A Seasonal-Trend Decomposition Procedure Based on Loess, "Journal of Official Statistics" 1990, vol. 6, pp. 3-73.
- Durbin R., Eddy S., Krogh A., Mitchison G., Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press, Cambridge 1998.
- Glasserman P., Monte Carlo Methods in Financial Engineering, Springer-Verlag, New York 2003.
- Goczek Ł., Przegląd i ocena ekonometrycznych metod używanych w modelach empirycznych wzrostu gospodarczego, "Gospodarka Narodowa" 2012, t. 10, pp. 49-73.
- Grama A., Karypis G., Kumar V., Gupta A., Introduction to Parallel Computing, Addison-Wesley, Reading, MA 2003.
- Hidden Markov Models in Finance, eds R.S. Mamon, R.J. Elliott, Springer International Series in Operations Research & Management Science, vol. 104, 2007.
- Jelinek F., Statistical Methods for Speech Recognition, MIT Press, Cambridge1997.
- Peng Y., Gong B., Liu H., Zhang Y., Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation, High Performance Computing and Applications, Lecture Notes in Computer Science, vol. 5938, Springer, Berlin-Heidelberg 2010, pp. 325-330.
- Próchniak M., Witkowski B., Time Stability of the Beta Convergence among EU Countries: Bayesian Model Averaging Perspective, "Economic Modeling" 2013, vol. 30, pp. 322-333.
- Rabin M.O., Probabilistic Automata, "Information and Control" 1963, vol. 6(3), pp. 230-245.
- Viterbi A., Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, "IEEE Transactions on Information Theory" 1967, vol. 13, issue 2.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171355665