Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 15 | nr 1 | 97-110
Tytuł artykułu

Winsorization Methods in Polish Business Survey

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the major problems involved in estimating information about economic activity across small domains is too small sample size and incompleteness of data sources. For instance, the distribution of enterprises by target variables tends to be considerably right-skewed, with high variation, high kurtosis and outliers. Therefore, it is not obvious that the implementation of traditional estimation methods meets the desired requirements, such as being free from bias or having competitive variance. Furthermore, the pressure to produce accurate estimates at a low level of aggregation or needs to substantially reduce sample size have increased the importance of exploring the possibilities of applying new, more sophisticated methods of estimation. The aim of the study was to test the usefulness of winsorization methods to estimate economic statistics from the DG1 survey. (original abstract)
Rocznik
Tom
15
Numer
Strony
97-110
Opis fizyczny
Twórcy
  • Poznań University of Economics, Poland
Bibliografia
  • CHAMBERS, R., KOKIC, P., SMITH, P., CRUDDAS, M., (2000). Winsorization for Identifying and Treating Outliers in Business Surveys, Proceedings of the Second International Conference on Establishment Surveys (ICES II), 687-696.
  • COX, B. G., BINDER, A., CHINNAPPA, N. B., CHRISTIANSON, A., COLLEDGE, M. J., KOTT, P. S., (1995). Business Survey Methods, John Wiley & Sons.
  • GROSS, W. F., BODE, G., TAYLOR, J. M., LLOYD-SMITH, C. W., (1986). Some finite population estimators which reduce the contribution of outliers, [in:] Proceedings of the Pacific Statistical Conference, 20-24 May 1985, Auckland, New Zealand.
  • KOKIC, P. N., BELL, P. A., (1994). Optimal winsorizing cutoffs for a stratified finite population estimator, Journal of Official Statistics, 10, 419-435.
  • PRESTON, J., MACKIN, C., (2002). Winsorization for Generalised Regression Estimation, Australian Bureau of Statistics.
  • PRESTON, J., MACKIN, C., (2002). Winsorization for Generalised Regression Estimation, Paper for the Methodological Advisory Committee, November 2002, Australian Bureau of Statistics.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171322127
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.