Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
This paper models income distribution in four Central and Eastern European (CEE) countries (the Czech Republic, Hungary, Poland and the Slovak Republic) in 1990s and 2000s using parametric models of income distribution. In particular, we use the generalized beta distribution of the second kind (GB2), which has been found in the previous literature to give an excellent fit to income distributions across time and countries. We have found that for Poland and Hungary, the GB2 model fits the data better than its nested alternatives (the Dagum and Singh-Maddala distributions). However, for Czech Republic and Slovak Republic the Dagum model is as good as the GB2 and may be preferred due to its simpler functional form. The paper also found that the tails of parametric income distribution in the Czech Republic, Poland and the Slovak Republic have become fatter in the course of transformation to market economy, which provides evidence for growing income bi-polarization in these societies. Statistical inference on changes in income inequality based on parametric Lorenz dominance suggests that, independently of inequality index used, income inequality in the Czech Republic, Poland and the Slovak Republic has increased during transformation. For Hungary, there is no Lorenz dominance and conclusions about the direction of changes in income inequality depend on the cardinal inequality measure used. (original abstract)
Rocznik
Tom
Numer
Strony
207-230
Opis fizyczny
Twórcy
autor
- University of Warsaw, Poland
Bibliografia
- Bandourian R., McDonald J.B., Turley R.S. (2003), A comparison of parametric models of income distribution across countries and over time, Estadistica, 55, 135-152.
- Bartels, C.P.A., Van Metele, H. (1975), Alternative Probability Density Functions of Income, Research memorandum, 29, Vrije University Amsterdam.
- Boccanfuso, D., Richard, P., Savard, L. (2013), Parametric and nonparametric income distribution estimators in CGE micro-simulation modelling, Economic Modelling, http://dx.doi.org/10.1016/j.econmod.2013.07.002.
- Bordley, R. F., McDonald, J.B., Mantrala, A. (1996), Something New, Something Old: Parametric Models for the Size Distribution of Income, Journal of Income Distribution, 6, 91-103.
- Brachmann, K., Andrea, S., Trede, M. (1996), Evaluating Parametric Income Distribution Models, Allegemeine Statistiches Archiv, 80, 285-98.
- Brzeziński, M. (2011), Statistical inference on income polarization in Poland, Przegląd Statystyczny, 58, 102-113.
- Burkhauser, R. V., Feng, S., Jenkins, S. P., Larrimore, J. (2012), Recent trends in top income shares in the United States: reconciling estimates from March CPS and IRS tax return data, Review of Economics and Statistics, 94, 371-388.
- Chotikapanich, D., Griffiths, W., Karunarathne, W. (2013), Calculating Poverty Measures from the Generalised Beta Income Distribution, Economic Record, 89, 48-66.
- Clauset, A., Shalizi, C. R., Newman, M. E. J. (2009), Power-law distributions in empirical data, SIAM Review, 51, 661-703.
- Cowell, F. A. (2000), Measurement of Inequality, [in:] Handbook of Income Distribution, Vol. 1, [ed.:] A. B. Atkinson and F. Bourguignon, Elsevier, Amsterdam, 87-166.
- Cowell, F. A., Flachaire, E. (2007), Income distribution and inequality measurement: The problem of extreme values, Journal of Econometrics, 141, 1044-1072.
- Dagum, C. (1977), A new model for personal income distribution: specification and estimation, Economie Appliquée, 30, 413-437.
- Dastrup, S. R., R. Hartshorn, J. B. McDonald (2007), The Impact of Taxes and Transfer Payments on the Distribution of Income: A Parametric Comparison, Journal of Economic Inequality, 5, 353-369.
- Domanski, C., Jedrzejczak, A. (2002), Income Inequality Analysis in the Period of Economic Transformation in Poland, International Advances in Economic Research, 8, 215-220.
- Esteban, J. Ray, D. (1994), On the measurement of polarization, Econometrica, 62, 819-851.
- Esteban, J., Ray, D. (2011), Linking conflict to inequality and polarization, American Economic Review, 101, 1345-1374.
- Foster, J., Wolfson, M. (2010), Polarization and the decline of the middle class: Canada and the U.S., Journal of Economic Inequality, 8, 247-273.
- Gibrat, R. (1931), Les Inegalites Economiques, Sirey, Paris.
- Graf, M., Nedyalkova, D. (2012), GB2: Generalized Beta Distribution of the Second Kind: Properties,Likelihood, Estimation, R Package Version 1.1.
- Graf, M., Nedyalkova, D. (2013), Modeling of Income and Indicators of Poverty and Social Exclusion Using the Generalized Beta Distribution of the Second Kind, Review of Income and Wealth, doi: 10.1111/roiw.12031.
- Hajargasht, G., Griffiths, W., Brice, J., Rao, D.S.P., Chotikapanich, D. (2012), Inference for Income Distributions Using Grouped Data, Journal of Business of Economic Statistics, 30, 563-76.
- Jäntti, M., Jenkins, S. P. (2010), The Impact of Macroeconomic Conditions on Income Inequality, Journal of Economic Inequality, 8, 221-240.
- Jagielski, M., Kutner, R. (2010), Study of Households' Income in Poland by Using the Statistical Physics Approach, Acta Physica Polonica A, 117, 615-618.
- Jenkins, S. P. (2007), gb2fit: Stata Module to fit Generalized Beta of the Second Kind Distribution by Maximum Likelihood, Statistical Software Components Archive, S456823, (http://ideas.repec.org/c/boc/bocode/s456823.html).
- Jenkins, S. P. (2009), Distributionally-sensitive inequality indices and the GB2 income distribution, Review of Income and Wealth, 55, 392-398.
- Kleiber, C. (1999), On the Lorenz Order Within Parametric Families of Income Distributions, Sankhya B61, 514-17.
- Kleiber, C. (2008), The Lorenz Curve in Economics and Econometrics, [in:] Advances on Income Inequality and Concentration Measures, [ed.:] G. Betti, A. Lemmi, Routledge, London, 225-242.
- Kleiber, C., Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, John Wiley, Hoboken, NJ.
- Kordos, J. (1990), Research on income distribution by size in Poland, [in:] Income and Wealth Distribution, Inequality and Poverty, [ed.:] C. Dagum, M. Zenga, Springer, New York, Berlin, London, and Tokyo, 335-351.
- Kot, S. M. (2008). Polaryzacja ekonomiczna. Teoria i zastosowanie, PWN, Warszawa.
- Lukasiewicz, P., Orlowski, A. (2004), Probabilistic Models of Income Distributions, Physica A, 344, 146-151.
- McDonald, J. B. (1984), Some Generalized Functions for the Size Distribution of Income, Econometrica, 52, 647-63.
- McDonald, J. B., Ransom, M. (2008), The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation and Related Measures of Inequality, [in:] Modeling Income Distributions and Lorenz Curves, [ed.:] D. Chotikapanich, Springer, New York, 147-66.
- McDonald, J. B., Xu, Y. J. (1995), A Generalization of the Beta Distribution with Applications, Journal of Econometrics, 66, 133-52, (Erratum: Journal of Econometrics 69, 427-8, 1995).
- Pareto, V. (1897), Cours d'économie politique, Ed. Rouge, Lausanne.
- Parker, S. C. (1999), The Generalized Beta as a Model for the Distribution of Earnings, Economics Letters, 62, 197-200.
- Prieto-Alaiz, M. (2007), Spanish Economic Inequality and Gender: A Parametric Lorenz Dominance Approach, Research on Economic Inequality, 14, 49-70.
- Salem, A.B., Mount, T. D. (1974), A convenient descriptive model of income distribution: The gamma density, Econometrica, 42, 1115-1127.
- Shorrocks, A. F. (1984), Inequality decomposition by population subgroups, Econometrica, 52, 1369-1388.
- Singh, S.K., Maddala, G.S. (1976), A function for the size distribution of incomes, Econometrica, 44, 963-970.
- Stephens, M. A. (1986), Tests based on EDF statistics, [in:] Goodness-of-fit techniques, [ed.:] R. B. D'Agostigno, M. A. Stephens, Marcel Dekker, New York, 95-193.
- Taille, C. (1981), Lorenz ordering within the generalized gamma family of income distributions, [in:] Statistical Distributions in Scientific Work, vol. 6, [ed.:] C. Taille, G. P. Patil, B. Balderssari, Reidel, Boston, 181-192.
- Wilfling, B. (1996), Lorenz ordering of generalized beta-II income distributions, Journal of Econometrics, 71, 381-388.
- Wimp, J. (1981), The computation of 3F2(1), International Journal of Computer Mathematics, 10, 55-62.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171258843