Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | nr 135 Analiza i wspomaganie decyzji | 121-136
Tytuł artykułu

Zastosowanie programowania stochastycznego w konstrukcji odpornych portfeli inwestycyjnych

Treść / Zawartość
Warianty tytułu
An Application of the Stochastic Programming to Building Robust Investment Portfolios
Języki publikacji
PL
Abstrakty
Jednym z istotnych zagadnień podejmowanych w nowoczesnej teorii portfelowej jest ograniczanie skutków ryzyka estymacji (ang. estimation risk). Przez ryzyko to rozumie się możliwość poniesienia straty w wyniku błędów estymacji parametrów modeli. W zagadnieniach wyboru portfela inwestycyjnego źródłem ryzyka estymacji jest wrażliwość klasycznej funkcji optymalnej alokacji na nieznane rzeczywiste wartości oczekiwanej stopy zwrotu portfela oraz miar ryzyka. (fragment tekstu)
EN
The paper discusses application of stochastic programming approach to the portfolio selection problem involving estimation risk. It focuses on problems aiming at assuring that the portfolio risk does not exceed a given limit with high probability. For solving the problems the sample approximation approach is proposed for which the most important issues like a method used for generating subsamples, setting the correct number of subsamples and empirical confidence level parameter are discussed. As far as the first issue is concerned a bootstrap approach was superior to Monte Carlo method in a simulation study based on returns data of stocks listed on the Warsaw Stock Exchange. For the latter problems it is advised changing the empirical confidence level parameter instead of the number of subsamples to match expected confidence level of the stochastic program. It is also shown that the discussed approach is suitable for investors with high risk aversion. (original abstract)
Twórcy
  • Uniwersytet Ekonomiczny w Katowicach
  • Uniwersytet Ekonomiczny w Katowicach
Bibliografia
  • Bonami P., Lejeune M. (2009): An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems under Stochastic Constraints. "Operations Research", Vol. 57 (3).
  • Calafiore G., Campi M. (2005): Uncertain Convex Programs: Randomized Solutions and Confidence Levels. "Mathematical Programming", Vol. 102.
  • Calafiore G., Campi M. (2006): The Scenario Approach to Robust Control Design. "IEEE Transactions on Automatic Control", Vol. 51.
  • Campi M., Garatti S. (2011): A Sampling-and-discarding Approach to Chanceconstrained Optimization: Feasibility and Optimality. "Journal of Optimization Theory and Applications", Vol. 148(2).
  • Goldfarb D., Iyengar G. (2001): Robust Portfolio Selection Problem. "Mathematics of Operations Research", No. 28.
  • Luedtke J., Ahmed S. (2008): A Sample Approximation Approach for Optimization with Probabilistic Constraints. "SIAM Journal of Optimization", Vol. 19.
  • Markowitz H. (1952): Portfolio Selection. "Journal of Finance", Vol 7.
  • Meucci A. (2005): Risk and Asset Allocation. Springer, Berlin.
  • Michaud R.O. (1998): Efficient Asset Management: A practical Guide to Stock Portfolio Optimization and Asset Allocation. Harvard Business School Press.
  • Orwat A. (2007a): Metody odporne SAW w estymacji ryzyka portfela aktywów długoterminowych na przykładzie polskiego rynku funduszy inwestycyjnych. W: Inwestycje finansowe i ubezpieczenia - Tendencje światowe a polski rynek. Red. K. Jajuga, W. Ronka-Chmielowiec. AE Wrocław.
  • Orwat A. (2007b): Wielowymiarowe metody odporne w estymacji ryzyka portfela aktywów długoterminowych na polskim rynku kapitałowym. W: Modelowanie preferencji a ryzyko. Red. T. Trzaskalik. AE Katowice.
  • Orwat A. (2010): Odporne metody alokacji aktywów a ocena ryzyka portfela akcji. "Skuteczne inwestowanie", nr 616.
  • Orwat-Acedańska A. (2011): Odporne bayesowskie metody alokacji aktywów a ocena ryzyka portfela akcji. Modelowanie preferencji a ryzyko'11. Red. T. Trzaskalik UE Katowice.
  • Pagoncelli B., Ahmed S., Shapiro A. (2009): The Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications. "Journal of Optimization Theory and Applications", Vol. 142.
  • Scherer B. (2002): Portfolio Resampling: Review and Critique. "Financial Analysts Journal", Vol. 58, No. 6.
  • Shapiro A., Dentcheva D., Ruszczyński A. (2009): Lectures on Stochastic Programming: Modelling and theory. SIAM, Philadelphia.
  • Tütüncü R.H., Koenig M. (2004): Robust Asset Allocation. "Annals of Operations Research", No. 132.
  • Yu L., Ji X., Wang S. (2003): Stochastic Programming Models in Financial Optimization: A Survey. "AMO - Advanced Modeling and Optimization", Vol. 5(1).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171253103
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.