Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | nr 135 Analiza i wspomaganie decyzji | 9-25
Tytuł artykułu

Dwukryterialny rozmyty model łańcucha krytycznego w projekcie - podstawy teoretyczne

Treść / Zawartość
Warianty tytułu
The Bi-Criterial Fuzzy Project Critical Chain Model - Theoretical Principles
Języki publikacji
PL
Abstrakty
Analiza czasowo-kosztowa, pozwalająca na ustalenie takiego planu projektu, który spełnia oczekiwania decydentów co do jak najwcześniejszej daty zakończenia projektu z jak najniższym budżetem, jest jednym z podstawowych zagadnień rozpatrywanych podczas planowania projektu w ujęciu wielokryterialnym. (fragment tekstu)
EN
The aim of this research work was to develop an optimization model for the problem of time-cost trade-off, taking into account the impact of the planned tasks or activities of contractors on the project. As a methodological basis for the proposed model the concept of critical chain E. Goldratt, which introduces the behavioral aspect of estimating the time steps in the project, but does not indicate the specific methods of quantification estimations. The presented model assumes the possibility of quantifying the workload of the project components in a set of fuzzy numbers and the ability to extract from these estimates reasonable and acceptable level of risk of non-compliance and security allowances, administered only to increase the safety assessment. The mechanism operates on optimization of decision variables representing the amount of work assigned to each resource in order to minimize the criterion function summarizing the direct costs of the activities in the project the costs of acceleration (or delays). (original abstract)
Twórcy
  • Uniwersytet Śląski w Katowicach
  • Uniwersytet Ekonomiczny w Katowicach
  • Uniwersytet Śląski w Katowicach
Bibliografia
  • Błaszczyk T., Nowak B. (2008): Project Costs Estimation on the Basis of Critical Chain Approach (in Polish). W: Modelowanie Preferencji a Ryzyko '08. Red. T. Trzaskalik. Akademia Ekonomiczna, Katowice.
  • Błaszczyk P., Błaszczyk T., Kania M.B. (2011): The Bi-criterial Approach to Project Cost and Schedule Buffers Sizing. Lecture Notes in Economics and Mathematical Systems. New state of MCDM in the 21st century. Springer.
  • Błaszczyk P., Błaszczyk T., Kania M.B. (2009): Task Duration Buffers or Work Amount Buffers. The First Earned Value Analysis Conference for the Continental Europe (proceedings), Vol. 1.
  • Brucker P., Drexl A., Möhring R., Neumann K., Pesch E. (1999): Resource-constrained Project Scheduling: Notation, Classification, Models and Methods. "European Journal of Operational Research", Vol. 112.
  • Buckey J.J., Eslami E., Feuring T. (2002): Fuzzy Mathematics in Economy and Engineering. Springer.
  • Chen L., Liang F., Xiaoran S., Deng Y., Wang H. (2010): Fuzzy-Safety-Buffer Approach for Project Buffer Sizing Considering the Requirements from Project Managers and Customers. Information Management and Engineering (ICIME), 2010 The 2nd IEEE International Conference.
  • Fulkerson D.R. (1961): A Network Flow Computation for Project Cost Curves. "Management Science", Vol. 7.
  • Goldratt E. (1997): Critical Chain. North River Press.
  • Gonzalez V., Alarcon L.F., Molenaar K. (2009): Multiobjective Design of Work-In-Process Buffer for Scheduling Repetitive Projects. "Automation in Construction", Vol. 18.
  • Herroelen W., Leus R. (2009): On the Merits and Pitfalls of Critical Chain Scheduling. "Journal of Operations Management", Vol. 19.
  • Jamison K.D., Lodwick W.A. (2001): Fuzzy Linear Programming Using a Penalty Method. "Fuzzy Sets and Systems", Vol. 119.
  • Kelley J.E. (1961): Critical-path Planning and Scheduling: Mathematical Basis. "Operations Research", Vol. 9.
  • Leach L. (2003): Schedule and Cost Buffer Sizing: How Account for the Bias Between Project Performance and Your Model. "Project Management Journal", Vol. 34.
  • Long L.D., Ohsato A. (2008): Fuzzy Critical Method for Project Schedulling under Resource Constraints and Uncertainty. "International Journal of Project Management", Vol. 26.
  • Ramik J. (2006): Duality in Fuzzy Linear Programming with Possibility and Necessity Relations. "Fuzzy Sets and Systems" 157.
  • Rogalska M., Bozejko W., Hejducki Z. (2008): Time/cost Optimization Using Hybrid Evolutionary Algorithm in Construction Project Scheduling. "Automation in Construction", Vol. 18.
  • Shi Q., Gong T. (2010): An Improved Project Buffer Sizing Approach to Critical Chain Management Under Resources Constraints and Fuzzy Uncertainty. Artificial Intelligence and Computational Intelligence, 2009. AICI '09. International Conference on.
  • Tukel O.I., Rom W.O., Eksioglu S.D. (2006): An Investigation of Buffer Sizing Techniques in Critical Chain Scheduling. "European Journal of Operational Research", Vol. 172.
  • Van de Vonder S., Demeulemeester E., Herroelen W., Leus R. (2005): The Use of Buffers in Project Management: The Trade-off Between Stability and Makespan. "International Journal of Production Economics", Vol. 97.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171252285
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.