Warianty tytułu
A Bayesian Random Effect Model in Cost Efficiency Analysis (with the Application to Polish Electric Power Stations)
Języki publikacji
Abstrakty
Stochastyczne modele graniczne są obecnie podstwowym narzędziem ekonometrycznej analizy efektywności przedsiębiorstw. Kluczowe problemy metodologiczne to dobór odpowiednio elastycznej postaci analitycznej funkcji produkcji lub kosztu oraz modelowanie systematycznych od niej odstępstw (nieefektywności). W pracy zaprezentowano i wykorzystano model bayesowski, jaki zaproponowali Koop, Osiewalski i Steel. Umożliwia on uwzględnienie wstępnych informacji o charakterystykach procesu produkcji i stopniu nieefektywności, dając możliwość analizy egzogenicznych przyczyn zróżnicowania efektywności przedsiębiorstw. Metodologię tę wykorzystano do oszacowania wybranych charakterystyk procesu produkcyjnego i indywidualnych wskaźników efektywności kosztowej 32 elektrowni i elektrociepłowni zawodowych w Polsce w latach 1995-1997.
The paper presents short-run translog cost function with composed error where the nonnegative inefficiency component is assumed to be constant over time. In view of the panel data literature such specification can be treated as an individual effects model (with nonnegative effects). Following Koop, Osiewalski and Steel (1997, Journal of Econometrics 76), the paper discuses Bayesian fixed and random effects models, focusing mainly on the Varying Efficiency Distribution (VED) specification. Using this Bayesian random effects model and the Gibbs sampling algorithm for performing Monte Carlo integration, empirical results were obtained for 32 Polish electric power stations observed over three consecutive years (1995-1997, annual data). Their technology shows increasing returns to scale (due to changing variable inputs only, keeping physical capital fixed), varying with the size of a power station. The posterior means of individual cost efficiency indicators vary from 0.55 to 0.97 with an average of about 0.80. The two dummy variables used to explain differences in efficiency levels (type of coal used, age below or above average) were found insignificant.
Twórcy
autor
autor
Bibliografia
- [1] Aigner D., Lovell C.A.K., Schmidt P., Formulation and estimation of stochastic frontier production function models, Journal of Econometrics 6, 1977.
- [2] Berndt E., The Practise of Econometrics. Classic and Contemporary, Addison-Wesley, Reading, 1991.
- [3] Box G.E.P., Tiao G.C., Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, 1973.
- [4] van den Broeck J., Koop G., Osiewalski J., Steel M.F.J., Stochastic frontier models: A Bayesian perspective, Journal of Econometrics 61, 1994.
- [5] Casella G., George E., Explaining the Gibbs sampler, American Statistician 46, 1992.
- [6] Christensen L.R., Greene W.H., Economies of scale in U.S. electric power generation, Journal of Political Economy 84, 1976.
- [7] Christensen L.R., Jorgenson D.W., Lau L.J., Conjugate duality and the transcendental logarythmic production frontiers, Econometrica 39, 1971.
- [8] Farrell M.J., The measurement of productive efficiency, Journal of the Royal Statistical Society, Series A, 120, 1957.
- [9] Fernândez C., Osiewalski J., Steel M.F.J., On the use of panel data in stochastic frontier models with improper priors, Journal of Econometrics 79, 1997.
- [10] Gelman A., Rubin D., A single series from the Gibbs sampler provides a false sense of security, [w:] Bayesian Statistics 4 (red.: J.M. Bernardo, J.O. Berger, A.R Dawid, A.EM. Smith), Oxford University Press, Oxford 1992.
- [11] Geweke J., Evaluating the accuracy of sampling - based approaches to the calculation of posterior moments, [w:] Bayesian Statistics 4 (red.: J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith), Oxford University Press, Oxford 1992.
- [12] Greene W.H., Econometric Analysis, Macmillan, New York 1993a.
- [13] Greene W.H., The econometric approach to effciency analysis, [w:] The Measurement of Productive Efficiency - Techniques and Applications (red.: Fried H.O., Lovell C.A.K., Schmidt RS.), Oxford University Press, New York, chap. 2, 1993B.
- [14] Koop G., Osiewalski J., Steel M.F.J., Hospital efficiency analysis through individual effects: A Bayesian approach, CentER Discussion Paper 9447, Tilburg 1994a.
- [15] Koop G., Osiewalski J., Steel M.F.J., Bayesian efficiency analysis with a flexible form: the AIM cost function, Journal of Business and Economics Statistics 12, 1994b.
- [16] Koop G., Osiewalski J., Steel M.F.J., Bayesian efficiency analysis through individual effects: -Hospital cost frontiers, Journal of Econometrics 76, 1997.
- [17] Koop G., Steel M.F.J., Osiewalski J., Posterior analysis of stochastic frontier models using Gibbs sampling, Computational Statistics 10, 1995.
- [18] Meeusen W. and van den Broeck J., Efficiency estimation from Cobb-Douglas production functions with composed error, International Economic Review 8, 1977.
- [19] O'Hagan A., Bayesian Inference, Edward Arnold, London 1994.
- [20] Osiewalski J., Bayesowska estymacja i predykcja dla jednorównaniowych modeli ekonometrycznych, Akademia Ekonomiczna w Krakowie (Monografie, nr 100), Kraków 1991.
- [21] Schmidt P., Sickles R,C., Production Frontiers and Panel Data, Journal of Business and Economic Statistics 2, 1984.
- [22] Tierney L., Markov chains for exploring posterior distributions (with discussion), Annals of Statistics 22, 1994.
- [23] Varian A.H., Microeconomics Analysis (Third Edition), W.W Norton, New York 1992.
- [24] Zellner A., An Introduction to Bayesian Inference in Econometrics, J. Wiley, New York 1971.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000096799740