Warianty tytułu
Języki publikacji
Abstrakty
Market research often uses data (i.e. marketing mix variables) that is equally spaced over time. Time series theory is perfectly suited to study this phenomena's dependency on time. It is used for forecasting and causality analysis, but their greatest strength is in studying the impact of a discrete event in time, which makes it a powerful tool for marketers. This article introduces the basic concepts behind time series theory and illustrates its current application in marketing research. We use time series analysis to forecast the demand for beer on the Slovenian market using scanner data from two major retail stores. Before our analysis, only broader time spans have been used to perform time series analysis (weekly, monthly, quarterly or yearly data). In our study we analyse daily data, which is supposed to carry a lot of ‘noise’. We show that - even with noise carrying data - a better model can be computed using time series forecasting, explaining much more variance compared to regular regression. Our analysis also confirms the effect of short term sales promotions on beer demand, which is in conformity with other studies in this field.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
116-124
Opis fizyczny
Daty
wydano
2008-05-01
online
2008-12-12
Twórcy
autor
- Faculty of Management Koper, University of Primorska, Cankarjeva 5, 6000 Koper, Slovenia
autor
- Faculty of Management Koper, University of Primorska, Cankarjeva 5, 6000 Koper, Slovenia
Bibliografia
- Autobox, Case studies - Regression versus Box-Jenkis (Times series analysis) Case studies, Available from
- Bourgeois, J. C., & J. G. Barnes. (1979). Does Advertising Increase Alcohol Consumption? Journal of Advertising Research 4(August): 19-29.
- Box, G. E. P., & G. M. Jenkins. (1976). Time Series Analysis: Forecasting & Control. San Francisco: Holden-Day.
- Box, G. E. P., & C. Tiao. (1976). Intervention Analysis with Applications to Economic & Environmental Problems. Journal of American Statistical Association 70: 70-79.
- Bronnenberg, B. J., & L. Wathieu. (1996). Asymmetric Promotion Effects & Br&Positioning. Marketing Science 15(4): 291-309.
- Dekimpe, M. G., & D. M. Hannsens. (1995). The Persistence of Marketing Effects on Sales. Marketing Science 14(1):1-21.[Crossref]
- Dekimpe M., D. M. Hanssens, V. R. Nijs, & J. M. B. Steenkamp. (2005). Measuring short- & long-run promotional effectiveness on scanner data using persistence modelling. Applied Stochastic Models in Business Industry 21: 409-416.
- Franke, G. R., & G. B.Wilcox. (1987). Alcoholic Beverage Advertising & Its Impact on Model Selection. Applied Mathematics & Computation 34 (November): 22-30.
- Franses, P. H. (1991). Primary Dem& for Beer in The Netherl&s: An Application of ARMAX Model Specification. Journal of Market research 28: 240-245.
- Hanssens, D. M., L. J. Parsons, & R. L. Schultz. (2001). Market Response Models - Econometric & Time Series Analysis, Boston: ISQM Kluwer Academic Publishers.
- Keane, M. P. (1997). Modeling Heterogeneity & State Dependence in Consumer Choice Behaviour. Journal of Business & Economic Statistics 15(3): 310-327.[WoS]
- Leeflang, P. S. H., & J. J. Van Dujin (1982). The Use of Regional Data in Marketing Models: The Dem& for Beer in The Netherl&s. European Research 10 (January): 29-40.
- Maddala, G. S. (1992). Introduction to Econometrics. New York: MacMillian Publishing Company.
- Seetharaman, P. B., A. Ainslie, & P. K. Chintagunta. (1999). Investigating Household State Dependence Effects across Categories. Journal of Market research 36(4): 488-500.
- Wichern, D., & R. H. Jones. (1977). Assessing the Impact of Market Disturbances using Intervention Analysis. Management Science 24(3): 329-337.[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10051-008-0013-7