Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 20 | 3 | 227-234
Tytuł artykułu

Weak Completeness Theorem for Propositional Linear Time Temporal Logic

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every formula which negation is not derivable (Satisfiability Theorem). The contrapositive of that theorem leads to derivability of every valid formula. We build a tree of consistent and complete PNPs which is used to construct the model.
Słowa kluczowe
Wydawca
Rocznik
Tom
20
Numer
3
Strony
227-234
Opis fizyczny
Daty
wydano
2012-12-01
online
2013-02-02
Twórcy
  • Department of Logic, Informatics and Philosophy of Science, University of Białystok, Plac Uniwersytecki 1, 15-420 Białystok, Poland
Bibliografia
  • [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
  • [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
  • [3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
  • [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
  • [5] Grzegorz Bancerek. K¨onig’s lemma. Formalized Mathematics, 2(3):397-402, 1991.
  • [6] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
  • [7] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.
  • [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
  • [9] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
  • [10] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. FormalizedMathematics, 1(3):529-536, 1990.
  • [11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
  • [12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
  • [13] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
  • [14] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
  • [15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
  • [16] Mariusz Giero. The axiomatization of propositional linear time temporal logic. FormalizedMathematics, 19(2):113-119, 2011, doi: 10.2478/v10037-011-0018-1.[Crossref]
  • [17] Mariusz Giero. The derivations of temporal logic formulas. Formalized Mathematics, 20(3):215-219, 2012, doi: 10.2478/v10037-012-0025-x.[Crossref]
  • [18] Mariusz Giero. The properties of sets of temporal logic subformulas. Formalized Mathematics, 20(3):221-226, 2012, doi: 10.2478/v10037-012-0026-9.[Crossref]
  • [19] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69-72, 1999.
  • [20] Fred Kr¨oger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag, 2008.
  • [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
  • [22] Karol Pak. Continuity of barycentric coordinates in Euclidean topological spaces. FormalizedMathematics, 19(3):139-144, 2011, doi: 10.2478/v10037-011-0022-5.[Crossref]
  • [23] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
  • [24] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
  • [25] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
  • [26] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
  • [27] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133-137, 1999.
  • [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
  • [29] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.
  • [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
  • [31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10037-012-0027-8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.