Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
It is known that commutative BCK-algebras form a variety, but BCK-algebras do not [4]. Therefore H. Yutani introduced the notion of quasicommutative BCK-algebras. In this article we first present the notion and general theory of quasi-commutative BCI-algebras. Then we discuss the reduction of the type of quasi-commutative BCK-algebras and some special classes of quasicommutative BCI-algebras.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
253-258
Opis fizyczny
Daty
wydano
2008-01-01
online
2009-03-20
Twórcy
autor
- Qingdao University of Science and Technology, China
autor
- Qingdao University of Science and Technology, China
autor
- Qingdao University of Science and Technology, China
autor
- Qingdao University of Science and Technology, China
Bibliografia
- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [2] Yuzhong Ding. Several classes of BCI-algebras and their properties. Formalized Mathematics, 15(1):1-9, 2007.
- [3] Yuzhong Ding and Zhiyong Pang. Congruences and quotient algebras of BCI-algebras. Formalized Mathematics, 15(4):175-180, 2007.
- [4] Jie Meng and YoungLin Liu. An Introduction to BCI-algebras. Shaanxi Scientific and Technological Press, 2001.
- [5] Tao Sun, Dahai Hu, and Xiquan Liang. Several classes of BCK-algebras and their properties. Formalized Mathematics, 15(4):237-242, 2007.
- [6] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
- [7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_v10037-008-0030-2