Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
A matrix A ∈ ℝn×n is a GM-matrix if A = sI − B, where 0 < ρ(B) ≤ s and B ∈WPFn i.e., both B and Bt have ρ(B) as their eigenvalues and their corresponding eigenvector is entry wise nonnegative. In this article, we consider a generalization of a subclass of GM-matrices having a nonnegative core nilpotent decomposition and prove a characterization result for such matrices. Also, we study various notions of splitting of matrices from this new class and obtain sufficient conditions for their convergence.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Daty
otrzymano
2014-03-31
zaakceptowano
2014-09-04
online
2014-11-07
Twórcy
autor
-
Ramanujan Institute of Advanced Study in Mathematics, University of Madras,
Chennai,- 600005, India
autor
-
Ramanujan Institute of Advanced Study in Mathematics, University of Madras,
Chennai,- 600005, India
autor
- Department of Mathematics, Indian Institute of Technology Madras, Chennai - 600 036, India
Bibliografia
- [1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and applications: Springer-Verlag, New York, 2003.
- [2] Agrawal N. Sushma, K.Premakumari and K.C. Sivakumar, Extensions of Perron-Frobenius splittings and relationships withnonnegative Moore-Penrose inverses, Lin. Multilinear Alg., DOI: 10. 1080/03081087.2013.840616[Crossref]
- [3] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.
- [4] A. Berman and R.J. Plemmons, Cones and iterative methods for best least squares solutions of linear systems, SIAM J. Numer.Anal., 11 (1974), 145-154.[Crossref]
- [5] S.L. Campbell and C.D. Meyer, Jr., Generalized Inverses of Linear Transformations, Dover, Inc., New York, 1991.
- [6] A. Elhashah and D.B. Szyld, Perron-Frobenius properties of general matrices, Research Report 07-01-10, Department ofMathematics, Temple University, Revised, November 2007.
- [7] A. Elhashah and D.B. Szyld, Generalization of M-matrices which may not have a nonnegative inverse, Lin. Alg. Appl., 429(2008), 2435–2450.
- [8] A. Elhashah and D.B. Szyld, Two characterizations of matrices with Perron-Frobenius property, Num. Linear Alg. App., (2009),1–6.
- [9] F. Chatelin, Eigenvalues of Matrices, John Wiley & Sons, Philadelphia, USA, 1993.
- [10] L. Jena, D. Mishra and S. Pani, Convergene and comparison theorem for single and double decompositions of rectangularmatrices, Calcolo, 51 (2014), 141-149.[WoS]
- [11] C.R. Johnson and P. Tarazaga, On matrices with Perron-Frobenius properties and some negative entries, Positivity, 8 (2004),327-338.[Crossref]
- [12] H.T. Le and J.J. McDonald, Inverses of M-type matrices created with irreducible eventually nonnegative matrices, Lin. Alg.Appl., 419 (2006), 668-674.
- [13] D. Mishra and K.C. Sivakumar, On splitting of matrices and nonnegative generalized inverses, Oper. Matrices, 6 (2012),85-95.[Crossref]
- [14] D.Mishra, Nonnegative splittings for rectangular matrices, Computers and Mathematics with Applications, 67 (2014), 136-144.[WoS]
- [15] D. Noutsos, On Perron-Frobenius property of matrices having some negative entries, Lin. Alg. Appl., 412 (2006), 132–153.
- [16] D.D. Olesky, M.J. Tsatsomeros and P.Van Den Driessche, Mv-matrces: A Generalization of M-matrices based on eventuallynonnegative matrices, Elec. J. Linear Algebra, 18 (2008), 339-351.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_spma-2014-0017