Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We generalize the theory of positive diagonal scalings of real positive definite matrices to complex diagonal scalings of complex positive definite matrices. A matrix A is a diagonal scaling of a positive definite matrix M if there exists an invertible complex diagonal matrix D such that A = D*MD and where every row and every column of A sums to one. We look at some of the key properties of complex diagonal scalings and we conjecture that every n by n positive definite matrix has at most 2n−1 scalings and prove this conjecture for certain special classes of matrices.We also use the theory of complex diagonal matrix scalings to formulate a van der Waerden type question on the permanent function; we show that the solution of this question would have applications to finding certain maximally entangled quantum states.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
68-77
Opis fizyczny
Daty
wydano
2014-01-01
otrzymano
2013-12-05
zaakceptowano
2014-04-13
online
2014-05-17
Twórcy
autor
- Department of Mathematics & Statistics, University of Guelph, Guelph, ON, Canada N1G 2W1, pereirar@uoguelph.ca
autor
- Department of Mathematics & Statistics, University of Guelph, Guelph, ON, Canada N1G 2W1
Bibliografia
- [1] I. Bengtsson and K. Zyczkowski. Geometry of Quantum States. Cambridge University Press, 2006.
- [2] P. J. Davis. Circulant Matrices. John Wiley & Sons, 1979.
- [3] P. J. Davis and I. Najfeld. Equisum matrices and their permanence. Quart. Appl. Math., 58(1):151-169, 2000.
- [4] G. P. Egorychev. The solution of van der Waerden’s problem for permanents. Adv. Math., 42:299-305, 1981.
- [5] D. I. Falikman. A proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix. Mat. Zametki, 29:931-938, 1981.
- [6] G. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge Mathematical Library, 1952.
- [7] R. Hubener, M. Kleinmann, T. Wei, C. Gonzalez-Guillen, and O. Guhne. Geometric measure of entanglement for symmetric states. Phys. Rev. A., 80:032324, 2009.
- [8] C. R. Johnson and R. Reams. Scaling of symmetric matrices by positive diagonal congruence. Linear Multilinear Algebra, 57:123-140, 2009.
- [9] M. Marcus. Subpermanents. Amer. Math. Monthly, 76:530-533, 1969.
- [10] A. W. Marshall and I. Olkin. Scaling of matrices to achieve specified row and column sums. Numer. Math., 12(1):83-90, 1968.
- [11] H. Minc. Permanents. Addison-Wesley Publishing Co., 1978.
- [12] R. Pereira. Differentiators and the geometry of polynomials. Journal of Mathematical Analysis and Applications, 285(1):336-348, 2003.
- [13] A. Pinkus. Interpolation by matrices. Electron. J. Linear Algebra, 11:281-291, 2004.
- [14] A. Shimony. Degree of entanglement. In D.M. Greenberger and A. Zeilinger, editors, Fundamental problems in quantum theory. A conference held in honor of Professor John A. Wheeler. Proceedings of the conference held in Baltimore, MD, June 18-22, 1994, volume 755 of Annals of the New York Academy of Sciences, pages 675-679, New York, 1995. New York Academy of Sciences.
- [15] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices. Annals of Mathematical Statistics, 35(2):876-879, 1964.[Crossref]
- [16] T. Wei and P.M. Goldbart. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev. A., 68:042307, 2003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_spma-2014-0007