Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
1349-1361
Opis fizyczny
Daty
wydano
2014-09-01
online
2014-05-08
Twórcy
Bibliografia
- [1] Beneki C.C., Kaimakamis G., Papantoniou B.J., Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl., 2002, 275(2), 586–614 http://dx.doi.org/10.1016/S0022-247X(02)00269-X
- [2] Dillen F., Kühnel W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 1999, 98(3), 307–320 http://dx.doi.org/10.1007/s002290050142
- [3] Hano J., Nomizu K., On isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampére equation of a certain type, Math. Ann., 1983, 262(2), 245–253 http://dx.doi.org/10.1007/BF01455315
- [4] Hano J., Nomizu K., Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tôhoku Math. J., 1984, 36(3), 427–437 http://dx.doi.org/10.2748/tmj/1178228808
- [5] Hou Z.H., Ji F., Helicoidal surfaces with H 2 = K in Minkowski 3-space, J. Math. Anal. Appl., 2007, 325(1), 101–113 http://dx.doi.org/10.1016/j.jmaa.2006.01.017
- [6] Ji F., Hou Z.H., A kind of helicoidal surfaces in 3-dimensional Minkowski space, J. Math. Anal. Appl., 2005, 304(2), 632–643 http://dx.doi.org/10.1016/j.jmaa.2004.09.065
- [7] Ji F., Hou Z.H., Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, J. Math. Anal. Appl., 2006, 318(2), 634–647 http://dx.doi.org/10.1016/j.jmaa.2005.06.032
- [8] Kobayashi O., Maximal surfaces in the 3-dimensional Minkowski space L 3, Tokyo J. Math., 1983, 6(2), 297–309 http://dx.doi.org/10.3836/tjm/1270213872
- [9] López F.J., López R., Souam R., Maximal surfaces of Riemann type in Lorentz-Minkowski space L3, Michigan Math. J., 2000, 47(3), 469–497 http://dx.doi.org/10.1307/mmj/1030132590
- [10] López R., Timelike surfaces with constant mean curvature in Lorentz three-space, Tôhoku Math. J., 2000, 52(4), 515–532 http://dx.doi.org/10.2748/tmj/1178207753
- [11] López R., Surfaces of constant Gauss curvature in Lorentz-Minkowski three-space, Rocky Mountain J. Math., 2003, 33(3), 971–993 http://dx.doi.org/10.1216/rmjm/1181069938
- [12] López R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 2014 (in press), preprint available at http://arxiv.org/abs/0810.3351
- [13] Mira P., Pastor J.A., Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math., 2003, 140(4), 315–334 http://dx.doi.org/10.1007/s00605-003-0111-9
- [14] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York, 1983
- [15] Sasahara N., Spacelike helicoidal surfaces with constant mean curvature in Minkowski 3-space, Tokyo J. Math., 2000, 23(2), 477–502 http://dx.doi.org/10.3836/tjm/1255958684
- [16] Strubecker K., Differentialgeometrie III, Sammlung Göschen, 1180, Walter de Gruyter, Berlin, 1959
- [17] Weinstein T., An Introduction to Lorentz Surfaces, de Gruyter Exp. Math., 22, Walter de Gruyter, Berlin, 1996 http://dx.doi.org/10.1515/9783110821635
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-014-0415-0