Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 12 | 8 | 1265-1277
Tytuł artykułu

The algebra of mode homomorphisms

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modes are idempotent and entropic algebras. While the mode structure of sets of submodes has received considerable attention in the past, this paper is devoted to the study of mode structure on sets of mode homomorphisms. Connections between the two constructions are established. A detailed analysis is given for the algebra of homomorphisms from submodes of one mode to submodes of another. In particular, it is shown that such algebras can be decomposed as Płonka sums of more elementary homomorphism algebras. Some critical examples are examined.
Wydawca
Czasopismo
Rocznik
Tom
12
Numer
8
Strony
1265-1277
Opis fizyczny
Daty
wydano
2014-08-01
online
2014-05-08
Twórcy
Bibliografia
  • [1] Bošnjak I., Madarász R., Retraction closure property, Algebra Universalis, 2013, 69(3), 279–285 http://dx.doi.org/10.1007/s00012-013-0229-0
  • [2] Csákány B., Varieties of affine modules, Acta Sci. Math. (Szeged), 1975, 37, 3–10
  • [3] Hion Ja.V., Ω-ringoids, Ω-rings and their representations, Trudy Moskov. Mat. Obšč., 1965, 14, 3–47 (in Russian)
  • [4] Mašulović D., Turning retractions of an algebra into an algebra, Novi Sad J. Math., 2004, 34(1), 89–98
  • [5] Neumann W.D., On the quasivariety of convex subsets of affine spaces, Arch. Math. (Basel), 1970, 21, 11–16 http://dx.doi.org/10.1007/BF01220869
  • [6] Pilitowska A., Zamojska-Dzienio A., Varieties generated by modes of submodes, Algebra Universalis, 2012, 68(3–4), 221–236 http://dx.doi.org/10.1007/s00012-012-0201-4
  • [7] Pöschel R., Reichel M., Projection algebras and rectangular algebras, In: General Algebra and Applications, Potsdam, January 31–February 2, 1992, Res. Exp. Math., 20, Heldermann, Berlin, 1993, 180–194
  • [8] Romanowska A.B., Smith J.D.H., Modal Theory, Res. Exp. Math., 9, Heldermann, Berlin, 1985
  • [9] Romanowska A.B., Smith J.D.H., Modes, World Scientific, Singapore, 2002 http://dx.doi.org/10.1142/4953
  • [10] Smith J.D.H., Romanowska A.B., Post-Modern Algebra, Pure Appl. Math. (N.Y.), John Wiley & Sons, New York, 1999 http://dx.doi.org/10.1002/9781118032589
  • [11] Sokratova O., Kaljulaid U., Ω-rings and their flat representations, In: Contributions to General Algebra, 12, Vienna, June 3–6, 1999, Heyn, Klagenfurt, 2000, 377–390
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-014-0405-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.