Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
976-990
Opis fizyczny
Daty
wydano
2014-07-01
online
2014-04-03
Twórcy
autor
- Shandong University, qfsun@sdu.edu.cn
Bibliografia
- [1] Chinta G., Diaconu A., Determination of a GL3 cuspform by twists of central L-values, Int. Math. Res. Not., 2005, 48, 2941–2967 http://dx.doi.org/10.1155/IMRN.2005.2941
- [2] Ganguly S., Hoffstein J., Sengupta J., Determining modular forms on SL2(ℤ) by central values of convolution L-functions, Math. Ann., 2009, 345(4), 843–857 http://dx.doi.org/10.1007/s00208-009-0380-2
- [3] Goldfeld D., Automorphic Forms and L-functions for the Group GL(n,ℝ), Cambridge Stud. Adv. Math., 99, Cambridge University Press, Cambridge, 2006
- [4] Goldfeld D., Li X., Voronoi formulas on GL(n), Int. Math. Res. Not., 2006, #86295
- [5] Hoffstein J., Lockhart P., Coefficients of Maass forms and the Siegel zero, Ann. Math., 1994, 140(1), 161–181 http://dx.doi.org/10.2307/2118543
- [6] Iwaniec H., Topics in Classical Automorphic Forms, Grad. Stud. Math., 17, American Mathematical Society, Providence, 1997
- [7] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004
- [8] Kim H.H., Sarnak P., Appendix 2 in Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc., 2003, 16(1), 139–183 http://dx.doi.org/10.1090/S0894-0347-02-00410-1
- [9] Li J., Determination of a GL2 automorphic cuspidal representation by twists of critical L-values, J. Number Theory, 2007, 123(2), 255–289 http://dx.doi.org/10.1016/j.jnt.2006.07.014
- [10] Liu S.-C., Determination of GL(3) cusp forms by central values of GL(3)×GL(2) L-functions, Int. Math. Res. Not., 2010, 21, 4025–4041
- [11] Liu S.-C., Determination of GL(3) cusp forms by central values of GL(3)×GL(2) L-functions, level aspect, J. Number Theory, 2011, 131(8), 1397–1408 http://dx.doi.org/10.1016/j.jnt.2011.01.014
- [12] Luo W., Special L-values of Rankin-Selberg convolutons, Math. Ann., 1999, 314(3), 591–600 http://dx.doi.org/10.1007/s002080050308
- [13] Luo W., Ramakrishnan D., Determination of modular forms by twists of critical L-values, Invent. Math., 1997, 130(2), 371–398 http://dx.doi.org/10.1007/s002220050189
- [14] Luo W., Ramakrishnan D., Determination of modular elliptic curves by Heegner points, Pacific J. Math., 1997, 181(3), 251–258 http://dx.doi.org/10.2140/pjm.1997.181.251
- [15] Munshi R., On effective determination of modular forms by twists of critical L-values, Math. Ann., 2010, 347(4), 963–978 http://dx.doi.org/10.1007/s00208-009-0465-y
- [16] Pi Q., Determining cusp forms by central values of Rankin-Selberg L-functions, J. Number Theory, 2010, 130(10), 2283–2292 http://dx.doi.org/10.1016/j.jnt.2010.06.002
- [17] Pi Q., Determination of cusp forms by central values of Rankin-Selberg L-functions, Lith. Math. J., 2011, 51(4), 543–561 http://dx.doi.org/10.1007/s10986-011-9147-z
- [18] Ramakrishnan D., Wang S., On the exceptional zeros of Rankin-Selberg L-functions, Composotio Math., 2003, 135(2), 211–244 http://dx.doi.org/10.1023/A:1021761421232
- [19] Sun Q., On determination of GL 3 cusp forms, Acta Arith., 2012, 151(1), 39–54 http://dx.doi.org/10.4064/aa151-1-4
- [20] Zhang Y., Determining modular forms of general level by central values of convolution L-functions, Acta Arith., 2011, 150(1), 93–103 http://dx.doi.org/10.4064/aa150-1-5
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-014-0404-3