Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We continue our exposition concerning the Carathéodory topology for multiply connected domains which we began in [Comerford M., The Carathéodory topology for multiply connected domains I, Cent. Eur. J. Math., 2013, 11(2), 322–340] by introducing the notion of boundedness for a family of pointed domains of the same connectivity. The limit of a convergent sequence of n-connected domains which is bounded in this sense is again n-connected and will satisfy the same bounds. We prove a result which establishes several equivalent conditions for boundedness. This allows us to extend the notions of convergence and equicontinuity to families of functions defined on varying domains.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
721-741
Opis fizyczny
Daty
wydano
2014-05-01
online
2014-02-15
Twórcy
autor
- University of Rhode Island, mcomerford@math.uri.edu
Bibliografia
- [1] Ahlfors L.V., Lectures on Quasiconformal Mappings, Van Nostrand Mathematical Studies, 10, Van Nostrand, Toronto, 1966
- [2] Beardon A.F., Pommerenke Ch., The Poincaré metric of plane domains, J. London Math. Soc., 1978, 18(3), 475–483 http://dx.doi.org/10.1112/jlms/s2-18.3.475
- [3] Carleson L., Gamelin T.W., Complex Dynamics, Universitext Tracts Math., Springer, New York, 1993
- [4] Comerford M., Short separating geodesics for multiply connected domains, Cent. Eur. J. Math., 2011, 9(5), 984–996 http://dx.doi.org/10.2478/s11533-011-0065-4
- [5] Comerford M., A straightening theorem for non-autonomous iteration, Comm. Appl. Nonlinear Anal., 2012, 19(2), 1–23
- [6] Comerford M., The Carathéodory topology for multiply connected domains I, Cent. Eur. J. Math., 2013, 11(2), 322–340 http://dx.doi.org/10.2478/s11533-012-0136-1
- [7] Conway J.B., Functions of One Complex Variable, Grad. Texts in Math., 11, Springer, New York-Heidelberg, 1972
- [8] Epstein A.L., Towers of Finite Type Complex Analytic Maps, PhD thesis, CUNY Graduate School, 1993
- [9] Herron D.A., Liu X.Y., Minda D., Ring domains with separating circles or separating annuli, J. Analyse Math., 1989, 53, 233–252 http://dx.doi.org/10.1007/BF02793416
- [10] Keen L., Lakic N., Hyperbolic Geometry from a Local Viewpoint, London Math. Soc. Stud. Texts, 68, Cambridge University Press, Cambridge, 2007
- [11] Lang S., Complex Analysis, 3rd ed., Grad. Texts in Math., 103, Springer, New York, 1993
- [12] McMullen C.T., Complex Dynamics and Renormalization, Ann. of Math. Stud., 135, Princeton University Press, Princeton, 1994
- [13] Newman M.H.A., Elements of the Topology of Plane Sets of Points, 2nd ed., Cambridge University Press, Cambridge, 1961
- [14] Pommerenke Ch., Uniformly perfect sets and the Poincaré metric, Arch. Math., 1979, 32(2), 192–199 http://dx.doi.org/10.1007/BF01238490
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0365-y