Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We establish the basic properties of the class of generalized simply connected John domains.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
349-361
Opis fizyczny
Daty
wydano
2014-02-01
online
2013-11-21
Twórcy
autor
- University of Jyväskylä, changyu.c.guo@jyu.fi
autor
- University of Jyväskylä, pkoskela@maths.jyu.fi
Bibliografia
- [1] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton University Press, Princeton, 2009
- [2] Balogh Z., Volberg A., Geometric localization, uniformly John property and separated semihyperbolic dynamics, Ark. Mat., 1996, 34(1), 21–49 http://dx.doi.org/10.1007/BF02559505
- [3] Buckley S., Koskela P., Sobolev-Poincaré implies John, Math. Res. Lett., 1995, 2(5), 577–593 http://dx.doi.org/10.4310/MRL.1995.v2.n5.a5
- [4] Gehring F.W., Hayman W.K., An inequality in the theory of conformal mapping, J. Math. Pures Appl., 1962, 41, 353–361
- [5] Gehring F.W., Palka B.P., Quasiconformally homogeneous domains, J. Analyse Math., 1976, 30, 172–199 http://dx.doi.org/10.1007/BF02786713
- [6] Guo C.Y., Generalized quasidisks and conformality II, preprint available at http://arxiv.org/abs/1311.1967
- [7] Guo C.Y., Koskela P., Takkinen J., Generalized quasidisks and conformality, Publ. Mat., 2014, 58(1) (in press)
- [8] Hakobyan H., Herron D.A., Euclidean quasiconvexity, Ann. Acad. Sci. Fenn. Math., 2008, 33(1), 205–230
- [9] John F., Rotation and strain, Comm. Pure Appl. Math., 1961, 14(3), 391–413 http://dx.doi.org/10.1002/cpa.3160140316
- [10] Koskela P., Lectures on quasiconformal and quasisymmetric mappings, Jyväskylä Lectures in Mathematics, 1, preprint available at http://users.jyu.fi/_pkoskela/quasifinal.pdf
- [11] Martio O., John domains, bi-Lipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures Appl., 1988, 33(1–2), 107–112
- [12] Martio O., Sarvas J., Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Math., 1979, 4(2), 383–401
- [13] Näkki R., Väisälä J., John disks, Exposition. Math., 1991, 9(1), 3–43
- [14] Nieminen T., Generalized mean porosity and dimension, Ann. Acad. Sci. Fenn. Math., 2006, 31(1), 143–172
- [15] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss., 299, Springer, Berlin, 1992 http://dx.doi.org/10.1007/978-3-662-02770-7
- [16] Reshetnyak Yu.G., Integral representations of differentiable functions in domains with nonsmooth boundary, Siberian Math. J., 1980, 21(6), 833–839 http://dx.doi.org/10.1007/BF00968470
- [17] Smith W., Stegenga D.A., Hölder domains and Poincaré domains, Trans. Amer. Math. Soc., 1990, 319(1), 67–100
- [18] Takkinen J., Mappings of finite distortion: formation of cusps II, Conform. Geom. Dyn., 2007, 11, 207–218 http://dx.doi.org/10.1090/S1088-4173-07-00170-1
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-013-0344-3