Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 11 | 3 | 519-529
Tytuł artykułu

Critical configurations of planar robot arms

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is known that a closed polygon P is a critical point of the oriented area function if and only if P is a cyclic polygon, that is, P can be inscribed in a circle. Moreover, there is a short formula for the Morse index. Going further in this direction, we extend these results to the case of open polygonal chains, or robot arms. We introduce the notion of the oriented area for an open polygonal chain, prove that critical points are exactly the cyclic configurations with antipodal endpoints and derive a formula for the Morse index of a critical configuration.
Wydawca
Czasopismo
Rocznik
Tom
11
Numer
3
Strony
519-529
Opis fizyczny
Daty
wydano
2013-03-01
online
2012-12-22
Twórcy
  • Institute for Fundamental and Interdisciplinary Mathematical Studies, Ilia State University, K. Cholokashvili Ave. 3/5, Tbilisi, 0132, Georgia, giorgi.khimshiashvili@iliauni.edu.ge
autor
  • Mathematisch Instituut, Universiteit Utrecht, P.O.Box 80010, 3508 TA, Utrecht, The Netherlands, D.Siersma@uu.nl
  • St. Petersburg State University, Universitetskaya emb. 7-9, St. Petersburg, 199034, Russia, millionnaya13@ya.ru
Bibliografia
  • [1] Kapovich M., Millson J., On the moduli space of polygons in the Euclidean plane, J. Differential Geom., 1995, 42(2), 430–464
  • [2] Khimshiashvili G., Cyclic polygons as critical points, Proc. I. Vekua Inst. Appl. Math., 2008, 58, 74–83
  • [3] Khimshiashvili G., Panina G., Siersma D., Zhukova A., Extremal Configurations of Polygonal Linkages, Oberwolfach Preprints, 24, Mathematisches Forschungsinstitut, Oberwolfach, 2011, available at http://www.mfo.de/scientificprogramme/publications/owp/2011/OWP2011_24.pdf
  • [4] Khimshiashvili G., Siersma D., Cyclic configurations of planar multiply penduli, preprint available at http://users.ictp.it/~pub_off/preprints-sources/2009/IC2009047P.pdf
  • [5] Panina G., Khimshiashvili G., Cyclic polygons are critical points of area, J. Math. Sci. (N.Y.), 2009, 158(6), 899–903 http://dx.doi.org/10.1007/s10958-009-9417-z[Crossref]
  • [6] Panina G., Zhukova A., Morse index of a cyclic polygon, Cent. Eur. J. Math., 2011, 9(2), 364–377 http://dx.doi.org/10.2478/s11533-011-0011-5[Crossref][WoS]
  • [7] Takens F., The minimal number of critical points of a function on a compact manifold and the Lusternik-Schnirelman cathegory, Invent. Math., 1968, 6, 197–244 http://dx.doi.org/10.1007/BF01404825[Crossref]
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-012-0147-y
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.