Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
An asymptotic approximation of Wallis’ sequence W(n) = Πk=1n 4k 2/(4k 2 − 1) obtained on the base of Stirling’s factorial formula is presented. As a consequence, several accurate new estimates of Wallis’ ratios w(n) = Πk=1n(2k−1)/(2k) are given. Also, an asymptotic approximation of π in terms of Wallis’ sequence W(n) is obtained, together with several double inequalities such as, for example, $W(n) \cdot (a_n + b_n ) < \pi < W(n) \cdot (a_n + b'_n )$ with $a_n = 2 + \frac{1} {{2n + 1}} + \frac{2} {{3(2n + 1)^2 }} - \frac{1} {{3n(2n + 1)'}}b_n = \frac{2} {{33(n + 1)^{2'} }}b'_n \frac{1} {{13n^{2'} }}n \in \mathbb{N} $ .
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
775-787
Opis fizyczny
Daty
wydano
2012-04-01
online
2012-01-18
Twórcy
autor
- University of Ljubljana, vito.lampret@fgg.uni-lj.si
Bibliografia
- [1] Abramowitz M., Stegun I.A. (Eds.), Handbook of Mathematical Functions, Dover, New York, 1974
- [2] Beckmann P., A History of π, St. Martin’s Griffin, New York, 1974
- [3] Berggren L., Borwein J., Borwein P., Pi: A Source Book, Springer, New York-Berlin-Heidelberg-Hong Kong-London-Milan-Paris-Tokyo, 2004
- [4] Blatner D, The Joy of π, Walker & Co., New York, 1997
- [5] Borwein J.M., Borwein P.B., Bailey D.H., Ramanujan, modular equations, and approximations to Pi or how to compute one billion digits of Pi, Amer. Math. Monthly, 1989, 96(3), 201–219 http://dx.doi.org/10.2307/2325206
- [6] Bromwich T.J.I’A., An Introduction to the Theory of Infinite Series, Chelsea, Providence, 1991
- [7] Chen C.-P., Qi F., The best bounds in Wallis’ inequality, Proc. Amer. Math. Soc., 2005, 133(2), 397–401 http://dx.doi.org/10.1090/S0002-9939-04-07499-4
- [8] Chu J.T., A modified Wallis product and some applications, Amer. Math. Monthly, 1962, 69(5), 402–404 http://dx.doi.org/10.2307/2312135
- [9] Henrici P., Applied and Computational Complex Analysis. II, Wiley Classics Lib., John Wiley & Sons, New York, 1991
- [10] Hirschhorn M.D., Comments on the paper “Wallis’ sequence …” by Lampret, Austral. Math. Soc. Gaz., 2005, 32(3), 194
- [11] Kazarinoff D.K., On Wallis’ formula, Edinburgh Math. Notes, 1956, 40, 19–21 http://dx.doi.org/10.1017/S095018430000029X
- [12] Knopp K., Theory and Applications of Infinite Series, Hafner, New York, 1971
- [13] Lampret V., Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product π could be computed fairly accurately, Austral. Math. Soc. Gaz., 2004, 31(5), 328–339
- [14] Lampret V., Constructing the Euler-Maclaurin formula (Celebrating Euler’s 300th birthday), Int. J. Math. Stat., 2007, 1(A07), 60–85
- [15] Lewin J., Lewin M., An Introduction to Mathematical Analysis, Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1993
- [16] Mortici C., A new method for establishing and proving accurate bounds for the Wallis ratio, Math. Inequal. Appl., 2010, 13(4), 803–815
- [17] Mortici C., New approximation formulas for evaluating the ratio of gamma functions, Math. Comput. Modelling, 2010, 52(1–2), 425–433 http://dx.doi.org/10.1016/j.mcm.2010.03.013
- [18] Mortici C., On some accurate estimates of π, Bull. Math. Anal. Appl., 2010, 2(4), 137–139
- [19] Mortici C., Sharp inequalities and complete monotonicity for the Wallis ratio, Bull. Belg. Math. Soc. Simon Stevin, 2010, 17(5), 929–936
- [20] Păltănea E., On the rate of convergence of Wallis’ sequence, Austral. Math. Soc. Gaz., 2007, 34(1), 34–38
- [21] Sofo A., Some representations of π, Austral. Math. Soc. Gaz., 2004, 31(3), 184–189
- [22] Sun J.-S., Qu C.-M., Alternative proof of the best bounds of Wallis’ inequality, Commun. Math. Anal., 2007, 2(1), 23–27
- [23] Wallis J., Computation of π by successive interpolations, Arithmetica Infinitorum, 1655; In: A Source Book in Mathematics, 1200–1800, Harvard University Press, Cambridge, 1969, 224–253
- [24] Wolfram S., Mathematica, v. 7.0, Wolfram Research, 1988–2009
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0138-4