Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Compositions and partitions of positive integers are often studied in separate frameworks where partitions are given by q-series generating functions and compositions exhibiting specific patterns are designated by generating functions for these patterns. Here, we view compositions as alternating sequences of weakly increasing and strictly decreasing partitions (i.e. alternating blocks). We obtain generating functions for the number of such partitions in terms of the size of the composition, the number of parts and the total number of “valleys” and “peaks”. From this, we find the total number of “peaks” and “valleys” in the composition of n which have the mentioned pattern. We also obtain the generating function for compositions which split into just two partition blocks. Finally, we obtain the two generating functions for compositions of n that start either with a weakly increasing partition or a strictly decreasing partition.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
788-796
Opis fizyczny
Daty
wydano
2012-04-01
online
2012-01-18
Twórcy
autor
- University of the Witwatersrand, Aubrey.Blecher@wits.ac.za
autor
- University of the Witwatersrand, Charlotte.Brennan@wits.ac.za
autor
- University of Haifa, toufik@math.haifa.ac.il
Bibliografia
- [1] Andrews G., Eriksson K., Integer Partitions, Cambridge University Press, Cambridge, 2004
- [2] Andrews G., Concave compositions, Electron. J. Combin., 2011, 18(2), #6
- [3] Blecher A., Compositions of positive integers n viewed as alternating sequences of increasing/decreasing partitions, Ars Combin. (in press)
- [4] Heubach S., Mansour T., Combinatorics of Compositions and Words, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, 2010
- [5] MacMahon P., Combinatory Analysis, Cambridge University Press, Cambridge, 1915–1916, reprinted by Chelsea, New York, 1960
- [6] Mansour T., Shattuck M., Yan S.H.F., Counting subwords in a partition of a set, Electron. J. Combin., 2010, 17(1), #19
- [7] Stanley R., Enumerative Combinatorics. I, Cambridge Stud. Adv. Math., 49, Cambridge University Press, Cambridge, 1997
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0100-5