Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
In this article we describe our experiences with a parallel Singular implementation of the signature of a surface singularity defined by z N + g(x; y) = 0.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
271-276
Opis fizyczny
Daty
wydano
2012-02-01
online
2011-12-09
Twórcy
autor
- GC University, ahsanbanyamin@gmail.com
autor
- University of Kaiserslautern, pfister@mathematik.uni-kl.de
autor
- University of Kaiserslautern, steidel@mathematik.uni-kl.de
Bibliografia
- [1] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of Differentiable Maps, Vol. 1, 2, Monogr. Math., 82, 83, Birkhäuser, Boston, 1985, 1988 http://dx.doi.org/10.1007/978-1-4612-5154-5
- [2] Campillo A., Algebroid Curves in Positive Characteristic, Lecture Notes in Math., 813, Springer, Berlin, 1980
- [3] Decker W., Greuel G.-M., Pfister G., Schönemann H., Singular 3-1-3 - A computer algebra system for polynomial computations, 2011, http://www.singular.uni-kl.de
- [4] van Doorn M.G.M., Steenbrink J.H.M., A supplement to the monodromy theorem, Abh. Math. Sem. Univ. Hamburg, 1989, 59, 225–233 http://dx.doi.org/10.1007/BF02942330
- [5] Greuel G.-M., Pfister G., A Singular Introduction to Commutative Algebra, 2nd ed., Springer, Berlin, 2008
- [6] de Jong T., Pfister G., Local Analytic Geometry, Adv. Lectures Math., Friedr. Vieweg & Sohn, Braunschweig, 2000
- [7] Kerner D., Némethi, A., The Milnor fibre signature is not semi-continous, In: Topology of Algebraic Varieties and Singularities, Contemp. Math., 538, American Mathematical Society, Providence, 2011, 369–376
- [8] Kulikov V.S., Mixed Hodge Structures and Singularities, Cambridge Tracts in Math., 132, Cambridge University Press, Cambridge, 1998
- [9] Milnor J., Singular Points of Complex Hypersurfaces, Ann. of Math. Stud., 61, Princeton University Press, Princeton, 1968
- [10] Némethi A., The real Seifert form and the spectral pairs of isolated hypersurface singularities, Compositio Math., 1995, 98(1), 23–41
- [11] Némethi A., The equivariant signature of hypersurface singularities and eta-invariant, Topology, 1995, 34(2), 243–259 http://dx.doi.org/10.1016/0040-9383(94)00031-F
- [12] Némethi A., Dedekind sums and the signature of f(x; y) + z N, Selecta Math., 1998, 4(2), 361–376 http://dx.doi.org/10.1007/s000290050035
- [13] Némethi A., The signature of f(x; y)+z N, In: Singularity Theory, Liverpool, August 1996, London Math. Soc. Lecture Note Ser., 263, Cambridge University Press, Cambridge, 1999, 131–149
- [14] Saito M., Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann., 1988, 281(3), 411–417 http://dx.doi.org/10.1007/BF01457153
- [15] Schrauwen R., Steenbrink J., Stevens J., Spectral pairs and the topology of curve singularities, In: Complex Geometry and Lie Theory, Sundance, 1989, Proc. Sympos. Pure Math., 53, American Mathematical Society, Providence, 1991, 305–328
- [16] Steenbrink J., Intersection form for quasi-homogeneous singularities, Compositio Math., 1977, 34(2), 211–223
- [17] Steenbrink J.H.M., Mixed Hodge structure on the vanishing cohomology, In: Real and Complex Singularities, Proc. Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, Sijthoff & Noordhoff, Alphen aan den Rijn, 1977, 525–563 http://dx.doi.org/10.1007/978-94-010-1289-8_15
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-011-0076-1