Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove a limit theorem in the space of analytic functions for the Hurwitz zeta-function with algebraic irrational parameter.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
319-327
Opis fizyczny
Daty
wydano
2011-04-01
online
2011-02-18
Twórcy
autor
- Vilnius University, laurincikas@maf.vu.lt
autor
- Würzburg University, steuding@mathematik.uni-wuerzburg.de
Bibliografia
- [1] Billingsley P., Convergence of Probability Measures, John Wiley & Sons, New York-London-Sydney, 1968
- [2] Cassels J.W.S., Footnote to a note of Devenport and Heilbronn, J. London Math. Soc., 1961, 36, 177–184 http://dx.doi.org/10.1112/jlms/s1-36.1.177
- [3] Conway J.B., Functions of One Complex Variable, Grad. Texas in Math., 11, Springer, New York-Heidelberg, 1973
- [4] Cramér H., Leadbetter M.R., Stationary and Related Stochastic Processes, John Wiley & Sons, New York-London-Sydney, 1967
- [5] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer, Dordrecht, 1996
- [6] Laurinčikas A, A limit theorem for the Hurwitz zeta-function with algebraic irrational parameter, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 2005, 322, Trudy po Teorii Chisel, 125–134 (in Russian)
- [7] Laurinčikas A, Steuding J., A limit theorem for the Hurwitz zeta-function with an algebraic irrational parameter, Arch. Math. (Basel), 2005, 85(5), 419–432
- [8] Laurinčikas A., Steuding J., Complement to the paper: A limit theorem for the Hurwitz zeta-function with an algebraic irrational parameter (Arch. Math. 85 (2005), 419–432), submitted http://dx.doi.org/10.1007/s00013-005-1190-8
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-010-0099-z