Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
In this short note, we extend Faugére’s F4-algorithm for computing Gröbner bases to polynomial rings with coefficients in an Euclidean ring. Instead of successively reducing single S-polynomials as in Buchberger’s algorithm, the F4-algorithm is based on the simultaneous reduction of several polynomials.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
1156-1159
Opis fizyczny
Daty
wydano
2010-12-01
online
2010-10-30
Twórcy
autor
- GC University, afshanatiq@gmail.com
Bibliografia
- [1] Adams W.W., Loustaunau P., An Introduction to Gröbner Bases, Grad. Stud. Math., 3, American Mathematical Scociety, Providence, 2003
- [2] Buchberger B., Bruno BuchbergerŠs PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symbolic Comput., 2006, 41(3–4), 475–511 http://dx.doi.org/10.1016/j.jsc.2005.09.007
- [3] Cox D.A., Little J., O’shea D., Using Algebraic Geometry, 2nd ed., Grad. Texts in Math., 185, Springer, New York, 2005
- [4] Faugére J.-Ch., A new efficient algorithm for computing Gröbner bases (F 4), J. Pure Appl. Algebra, 1999, 139(1–3), 61–88 http://dx.doi.org/10.1016/S0022-4049(99)00005-5
- [5] Greuel G.-M., Pfister G., A Singular Introduction to Commutative Algebra, 2nd ed., Springer, Berlin, 2008
- [6] Greuel G.-M., Pfister G., Schönemann H., Singular - A Computer Algebra System for Polynomial Computations, free software under GNU General Public Licence (1990-to date), available at http://www.singular.uni-kl.de
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-010-0064-x