Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The distribution of the vector (|ζ(s, α)|; ζ(s, α)), where ζ(s, α) is the Hurwitz zeta-function with transcendental parameter α, is considered and a probabilistic limit theorem is obtained. Also, the dependence between |ζ(s, α)| and ζ(s, α) in terms of m-characteristic transforms is discussed.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
786-794
Opis fizyczny
Daty
wydano
2010-08-01
online
2010-07-24
Twórcy
autor
- Department of Matematics and Informatics, Vilnius University, Vilnius, Lithuania, antanas.laurincikas@maf.vu.lt
Bibliografia
- [1] Bagchi B., The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Ph.D. thesis, Indian Statistical Institute, Calcutta, 1981
- [2] Billingsley P., Convergence of Probability Measures, Wiley, New York, 1968
- [3] Genys J., Laurinčikas A., Weighted limit theorems for general Dirichlet series, Unif. Distrib. Theory, 2007, 2(2), 49–66
- [4] Laurinčikas A., Distribution of values of complex-valued functions, Litovsk. Mat. Sb., 1975, 15(2), 25–39, (in Russian)
- [5] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht, 1996
- [6] Laurinčikas A., Limit theorems for general Dirichlet series, Theory Stoch. Process., 2002, 8(3–4), 256-268
- [7] Laurinčikas A., Remarks on characteristic transforms of probability measures, Šiauliai Math. Semin., 2007, 2(10), 43–52
- [8] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer, Dordrecht, 2002
- [9] Laurinčikas A., Macaitienė R., The characteristic transforms on ℝ×ℂ, Integral Transforms Spec. Funct., 2008, 19(1–2), 11–22
- [10] Matsumoto K., Probabilistic value-distribution theory of zeta-functions, Sugaku Expositions, 2004, 17(1), 51–71
- [11] Steuding J., Value-Distribution of L-Functions, Lecture Notes in Mathematics, 1877, Springer, Berlin, 2007
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-010-0043-2