Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper, is to introduce the convex structure (specially, Takahashi convex structure) on modular spaces. Moreover, we are interested in proving some common fixed point theorems for non-self mappings in modular space.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
357-366
Opis fizyczny
Daty
wydano
2010-04-01
online
2010-04-14
Twórcy
Bibliografia
- [1] Ćirić L.B., A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc., 1974, 45, 267–237 http://dx.doi.org/10.2307/2040075
- [2] Das M., Naik K.V., Common fixed point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc., 1979, 77(3), 369–373 http://dx.doi.org/10.2307/2042188
- [3] Gajić L., Quasi-contractive nonself mappings on Takahashi convex metric spaces, Novi Sad J. Math., 2000, 30, 41–46
- [4] Jungck G., Commuting mappings and fixed point, Amer. Math. Monthly, 1976, 83, 261–263 http://dx.doi.org/10.2307/2318216
- [5] Jungck G., Compatible mappings and common fixed point, Int. J. Math. Math. Sci., 1986, 9, 771–779 http://dx.doi.org/10.1155/S0161171286000935
- [6] Musielak J., Orlicz W., On modular spaces, Studia Math., 1959, 18, 49–65
- [7] Nakano H., Modular semi-ordered spaces, Tokyo, Japan, 1959
- [8] Rakočević V., Quasi contraction nonself mappings on Banach spaces and common fixed point theorems, Publ. Math. Debrecen, 2001, 58, 451–460
- [9] Ume J.S., Fixed point theorems related to Ćirić contraction principle, J. Math. Anal. Appl., 1998, 225, 630–640 http://dx.doi.org/10.1006/jmaa.1998.6030
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-010-0012-9