Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
The infimum of elements a and b of a Hilbert algebra are said to be the compatible meet of a and b, if the elements a and b are compatible in a certain strict sense. The subject of the paper will be Hilbert algebras equipped with the compatible meet operation, which normally is partial. A partial lower semilattice is shown to be a reduct of such an expanded Hilbert algebra i ?both algebras have the same ?lters.An expanded Hilbert algebra is actually an implicative partial semilattice (i.e., a relative subalgebra of an implicative semilattice),and conversely.The implication in an implicative partial semilattice is characterised in terms of ?lters of the underlying partial semilattice.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
264-279
Opis fizyczny
Daty
wydano
2007-06-01
online
2007-06-01
Twórcy
autor
- University of Latvia, jc@lanet.lv
Bibliografia
- [1] J.C. Abbott: “Semi-boolean algebra”, Matem. Vestnik N. Ser., Vol. 4(19), (1967), pp. 177–198.
- [2] J.C. Abbott: “Implication algebra”, Bull. Math. Soc. Sci. Math. R. S. Roumanie, Vol. 11, (1967), pp. 3–23.
- [3] J. Berman and W.J. Block: “Free Lukasiewicz and hoop residuation algebras”, Studia Logica, Vol. 68, (2001), pp. 1–28.
- [4] D. Busneag: “A note on deductive systems of a Hilbert algebra”, Kobe J. Math., Vol. 2, (1985), pp. 29–35.
- [5] D. Busneag: “Hertz algebras of fractions and maximal Hertz algebras of quotients”, Math.Japon., Vol. 39, (1993), pp. 461–469.
- [6] I. Chajda: “The lattice of deductive systems on Hilbert algebras”, Southeast Asian Bull. Math., Vol. 26, (2002), pp. 21–26. http://dx.doi.org/10.1007/s100120200022
- [7] I. Chajda and R. Halaš: “Order algebras”, Demonstr.Math., Vol. 35, (2002), pp. 1–10.
- [8] I. Chajda and Z. Seidl: “An algebraich approach to partial lattices”, Demonstr. Math., Vol. 30, (1997), pp. 485–494.
- [9] J. Cīrulis: “Subtractive nearsemilattices”, Proc. Latvian Acad. Sci., Vol. 52B, (1998), pp. 228–233.
- [10] J. Cīrulis: “(H)-Hilbert algebras are not same as Hertz algebras”, Bull. Sect. Log. (Lódź), Vol. 32, (2003), pp. 107–108.
- [11] J. Cīrulis: “Hilbert algebras as implicative partial semilattices”, Abstracts of AAA-67, Potsdam,(2004), http://at.yorku.ca/cgi-bin/amca/canj-36.
- [12] J. Cīrulis: “Multipliers,closure endomorphisms and quasi-decompositions of a Hilbert algebra”, Contrib. Gen. Algebra, Vol. 16, (2005), pp. 25–34.
- [13] H.B. Curry: Foundations of Mathematical Logic, McGraw-Hill, New York e.a., 1963.
- [14] A. Diego: Sobre Algebras de Hilbert, Notas de Logica Mat., Vol. 12, Inst. Mat. Univ. Nac. del Sur, Bahia Blanca, 1965.
- [15] A. Diego: Les Algébres de Hilbert, Collect. de Logique Math., Sér A, Vol., 21, Gauthier-Willar, Paris, 1966.
- [16] A.V. Figallo, G. Ramón and S. Saad: “A note on Hilbert algebras with infimum”, Mat.Contemp., Vol. 24, (2003), pp. 23–37.
- [17] A. Figallo, Jr. and A. Ziliani: “Remarks on Hertz algebras and implicative semilattices”, Bull. Sect. Logic (Lódź), Vol. 24, 2005, pp. 37–42.
- [18] G. Grätzer: General Lattice Theory, Akademie-Verlag, Berlin, 1978.
- [19] R. Halaš: “Pseudocomplemented ordered sets”, Arch.Math.(Brno), Vol. 29, (1993), pp. 153–160.
- [20] R. Halaš: “Remarks on commutative Hilbert algebras”, Math.Bohemica, Vol. 127, (2002), pp. 525–529.
- [21] L. Henkin: “An algebraic characterization of quantifiers”, Fund. Math., Vol. 37, (1950), pp. 63–74.
- [22] S.M. Hong and Y.B. Jun: “On a special class of Hilbert algebras”, Algebra Colloq., Vol. 3, (1996), pp. 285–288.
- [23] A. Horn: “The separation theorem of intuitionistic propositional calculus”, J. Symb. Logic, Vol. 27, (1962), pp. 391–399. http://dx.doi.org/10.2307/2964545
- [24] K. Iseki and S. Tanaka: “An introduction in the theory of BCK-algebras”, Math. Japon., Vol. 23, (1978), pp. 1–26.
- [25] Y.B. Jun: “Deductive systems of Hilbert algebras”, Math. Japon., Vol. 42, (1996), pp. 51–54.
- [26] Y.B. Jun: “Commutative Hilbert algebras”, Soochow J. Math., Vol. 22, (1996), pp. 477–484.
- [27] T. Katriňák: “Pseudokomplementäre Halbverbande”, Mat. Časopis, Vol. 18, (1968), pp. 121–143.
- [28] M. Kondo: “Hilbert algebras are dual isomorphic to positive implicative BCK-algebras”, Math. Japon., Vol. 49, (1999), pp. 265–268.
- [29] M. Kondo: “(H)-Hilbert algebras are same as Hertz algebras”, Math. Japon., Vol. 50, (1999), pp. 195–200.
- [30] E.L. Marsden: “Compatible elements in implicative models”, J. Philos. Logic, Vol. 1, (1972), pp. 156–161. http://dx.doi.org/10.1007/BF00650494
- [31] E.L. Marsden: “A note on implicative models”, Notre Dame J. Formal Log., Vol. 14, (1973), pp. 139–144. http://dx.doi.org/10.1305/ndjfl/1093890823
- [32] A. Monteiro: “Axiomes independants pour les algèbres de Brouwer”, Rev. Un. Mat. Argentina, Vol. 17, (1955), pp. 149–160.
- [33] Y.S. Pawar: “Implicative posets”, Bull. Calcutta Math. Soc., Vol. 85, (1993), pp. 381–384.
- [34] W.C. Nemitz: “On the lattice of filters of an implicative semi-lattice”, J. Math. Mech., Vol. 18, (1969), pp. 683–688.
- [35] H. Rasiowa: An Algebraic Approach to Non-classical Logics, PWN, North-Holland, Warszawa, 1974.
- [36] S. Rudeanu: “On relatively pseudocomplemented posets and Hilbert algebras”, An. Stiint. Univ. Iaşi, N. Ser., Ia, Suppl., Vol. 31, (1985), pp. 74–77.
- [37] A. Torrens: “On the role of the polynomial (X → Y ) → Y in some implicative algebras”, Zeitschr. Log. Grundl. Math., Vol. 34, (1988), pp. 117–122.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-007-0008-2