Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Taking cylinder objects, as defined in a model category, we consider a cylinder construction in a cofibration category, which provides a reformulation of relative homotopy in the sense of Baues. Although this cylinder is not a functor we show that it verifies a list of properties which are very closed to those of an I-category (or category with a natural cylinder functor). Considering these new properties, we also give an alternative description of Baues’ relative homotopy groupoids.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
376-394
Opis fizyczny
Daty
wydano
2006-09-01
online
2006-09-01
Twórcy
autor
- University of La Laguna, jmgarcal@ull.es
autor
- University of La Laguna
autor
- University of La Laguna
Bibliografia
- [1] M. Artin and B. Mazur: Etale homotopy, Lecture Notes in Maths, Vol. 100, Springer-Verlag, 1969.
- [2] H.J. Baues: Algebraic homotopy, Cambridge University Press, 1989.
- [3] D.A. Edwards and H.M. Hastings: Cech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Mathematics, Vol. 542, Springer Verlag, 1976.
- [4] K. Hess: “Model categories in algebraic topology,” Appl. Categ. Struct., Vol. 10(3), (2002), pp. 195–220. http://dx.doi.org/10.1023/A:1015218106586
- [5] P.S. Hirschhorn: Model Categories and Their Localizations, Mathematical Surveys and Monographs, Vol. 99, Amer. Math. Soc, 2003.
- [6] M. Hovey: Model Categories, Mathematical Surveys and Monographs, Vol. 63, Amer. Math. Soc, 1999.
- [7] D.C. Isaksen: “Strict model structures for pro-categories, Categorical decomposition techniques in algebraic topology”, Prog. Math., Vol. 215, (2004), pp. 179–198.
- [8] D.G. Quillen: Homolopical Algebra, Lecture Notes in Maths, Vol. 43, Springer-Verlag, 1967.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-006-0021-x