Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We apply a method of Euler to algebraic extensions of sets of numbers with compound additive inverse which can be seen as quotient rings of R[x]. This allows us to evaluate a generalization of Riemann’s zeta function in terms of the period of a function which generalizes the function sin z. It follows that the functions generalizing the trigonometric functions on these sets of numbers are not periodic.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
395-412
Opis fizyczny
Daty
wydano
2006-09-01
online
2006-09-01
Twórcy
autor
- Université de Moncton, gauthic@umoncton.ca
Bibliografia
- [1] H. Cartan: Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes, Hermann, Paris, 1961.
- [2] P. Deguire and C. Gauthier: “Sur la dérivation dans certains anneaux quotients de R[x]”, Ann. Sci. Math. Québec, Vol. 24, (2000), pp. 19–31.
- [3] L. Euler: “De summis serierum reciprocarum”, Comment. Acad. Sci. Petropolit., Vol. 7(1734/35), (1740), pp. 123–134; Opera omnia, Ser. 1, Vol. 14, Leipzig-Berlin, 1924, pp. 73–86.
- [4] C. Gauthier: “Quelques propriétés algébriques des ensembles de nombres à inverse additif composé”, Ann. Sci. Math. Québec, Vol. 26, (2002), pp. 47–59.
- [5] I.J. Good: “A simple generalization of analytic function theory”, Expo. Math., Vol. 6 (1988), pp. 289–311.
- [6] E. Grosswald: Topics from the Theory of Numbers, Birkhäuser, Boston, 1984.
- [7] M.E. Muldoon and A.A. Ungar: “Beyond sin and cos”, Math. Mag., Vol. 69 (1996), pp. 2–14. http://dx.doi.org/10.2307/2691389
- [8] H. Silverman: Complex Variables, Houghton Mifflin, Boston, 1975.
- [9] G. Valiron: Théorie des fonctions, Masson, Paris, 1948.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.doi-10_2478_s11533-006-0020-y